تحميلات ممتازة

حمل برنامج القرآن مع التجويد ar_tajweed_almuyassar.pdf
حمل برنامج القرآن مع التلاوة quran_telawah_01القرآن مع التلاوة برنامج.exe
حمل برنامج القرآن الكريم بصيغة وورد.doc
تحميلات : برنامج الذاكرالقرآن مع الترجمةبرنامج القرآن مع التفسيربرنامج القرآن مع التلاوةبرنامج المكتبة الالكترونيةو.حمل Quran_winxp.rarحمل نسخة رائعة من المصحف الشريف من هنا-أو من هنا القرآن الكريم مبروز.

الأربعاء، 14 سبتمبر 2022

مقراب جيمس ويب الفضائي ومقارنة مرآة جيمس ويب مع مرآة هابل و مسابير الفضاء النشطة و مسابير فوياجر ومسبار نيو هورايزونز. و مسبار غاليليو...


 

=======

مقراب جيمس ويب الفضائي

من ويكيبيديا، الموسوعة الحرة

مقراب جيمس ويب الفضائي

عرض تلسكوب جيمس ويب الفضائي مع نشر مكوناته بالكامل

شارة مقراب جيمس ويب الفضائي

طبيعة المهمة مقراب فضائي

المشغل ناسا / وكالة الفضاء الأوروبية / معهد مراصد علوم الفضاء

الموقع الإلكتروني www.jwst.nasa.gov

مدة المهمة 10 سنوات (مخطط)

خصائص المركبات الفضائية

المصنع نورثروب جرومان

Ball Aerospace & Technologies

وزن الإطلاق 6,500 كـغ (14,300 رطل)

الأبعاد 20.197 م × 14.162 م (66.26 قدم × 46.46 قدم), الدرع الشمسي

الطاقة 2 كيلوواط

الطاقم ؟؟؟

بداية المهمة

تاريخ الإطلاق أُطلق يوم 25 ديسمبر 2021

الصاروخ أريان 5 ECA

موقع الإطلاق مركز جويانا للفضاء، إيلا-3

المقاول أريانسبيس

المتغيرات المدارية

النظام المرجعي نقطة L2 الخاصة بمدار الأرض-الشمس

النظام المداري مدار الطوق

نقطة الحضيض 374,000 كـم (232,000 ميل)

نقطة الأوج 1,500,000 كـم (930,000 ميل)

الدور المداري 6 أشهر

المرصد الرئيسي

النوع مقراب كورشي

القُطر 6.5 م (21 قدم)

البُعد البؤري 131.4 م (431 قدم)

منطقة التجميع 25.4 م2 (273 قدم2)

الموجات 0.6-28.3 ميكرومتر (من البرتقالي إلى منتصف الأشعة تحت الحمراء)

الاستجابة

Band

S-band, telemetry, tracking, and control

Ka-band, data acquisition

مرصد هابل الفضائي

 

مقراب جيمس ويب الفضائي أو تلسكوب جيمس ويب الفضائي (بالإنجليزية: James Webb Space Telescope)‏ اختصاراً JWST، هو مرصد فضائي طُوِّر بشكل مباشر من قِبل ناسا ووكالة الفضاء الأوروبية ووكالة الفضاء الكندية. من المخطط أن يَخلف تلسكوب هابل الفضائي في إطار مهمة فلاجشيب الخاصة بناسا في الفيزياء الفلكية. سيوفر مقراب جيمس ويب، الذي أطلق في 25 ديسمبر 2021، دقة وحساسية محسَّنتان تفوقان تلسكوب هابل، كما انه سيخلف مقراب سبيتزر الفضائي الذي انتهت مدة خدمته في عام 2020. سيتموضع تلسكوب جيمس ويب الفضائي على بعد 5و1 مليون كيلومتر خلف الأرض والشمس في نقطة لاغرانج L2، وسوف يحوم حول تلك النقطة في مدار دائري ليقوم بالرصد.

وسيمكِّن مجموعة واسعة من التحقيقات في مجاليّ علم الفلك وعلم الكون، بما في ذلك رصد بعض الأحداث والأجرام الفلكية الأكثر بُعدًا في الكون، مثل تكوُّن المجرات الأولى، والتوصيف التفصيلي للأغلفة الجوية للكواكب خارج النظام الشمسي التي من المحتمَل أن تكون صالحة للحياة.

تتكون المرآة الأساسية لمقراب جيمس ويب، وهي عنصر التلسكوب البصري، من 18 قطعة من المرايا سداسية الأضلاع المصنوعة من البيريليوم المطلي بالذهب واللائي تتحد لتكوين مرآة قُطرها 6.5 مترًا (21 قدمًا)، وهي أكبر بكثير من مرآة هابل التي تبلغ 2.4 مترًا (7 أقدام و10 بوصات). وعلى عكس هابل، والذي يرصد الأطياف القريبة من الأشعة فوق البنفسجية، والمرئية، والقريبة من الأشعة تحت الحمراء (من 0.1 إلى 1 ميكرومتر)، سوف يرصد مقراب جيمس ويب في نطاق تردد أقل، من الضوء المرئي ذو الطول الموجي الطويل حتى منتصف الأشعة تحت الحمراء (من 0.6 إلى 28.3 ميكرومتر)، وهو ما سيسمح له برصد الأجرام ذات الانزياح الأحمر العالي والتي ستكون قديمة جدًا وبعيدة جدًا عنا، ولا يستطيع مقراب هابل الفضائي الرصد في ذلك الحيز من الأشعة تحت الحمراء ولا بد من إبقاء المقراب باردًا جدًا ليتمكن من الرصد بواسطة الأشعة تحت الحمراء دون تدَخّل خارجي، لذلك سينشر في الفضاء بالقرب من نقطة لاجرانج الشمس-الأرضL2، وسيُبقي الدرع الشمسي الكبير المصنوع من السيليكون والكابتون المغلف بالألومنيوم ودرجة حرارة مرآته وأجهزته أقل من 50 كلفن.يدير مركز جودارد لرحلات الفضاء التابع لناسا جهود التطوير، وشغل معهد مراصد علوم الفضاء تلسكوب ويب بعد إطلاقه. والمتعاقد الرئيسي هو نورثروب جرومان. وقد سمي على اسم جيمس إدوين ويب، الذي كان مديرًا لناسا من سنة 1961 إلى سنة 1968 ولعب دورًا أساسيًا في برنامج أبولو.بدأ التطوير في سنة 1996 لإطلاق كان مخطَّطًا مبدئيًا لعام 2007 وميزانية قدرها 500 مليون دولار أمريكي، ولكن المشروع تعرَّض للعديد من التأجيلات وتجاوزات التكاليف، وخضع لعملية إعادة تصميم كبيرة في سنة 2005. وانتهى من إنشاء تلسكوب جيمس ويب في أواخر سنة 2016، وبعد ذلك بدأت مرحلة الاختبار المكثَّفة. وفي مارس 2018 أجَّلت ناسا الإطلاق بعد تمزُّق درع الشمس خلال ممارسة النشر. واجل الإطلاق مرة أخرى في يونيو 2018 إثر توصيات من مجلس مراجعة مستقل. وعلق العمل على إدماج واختبار التلسكوب في مارس 2020 بسبب جائحة فيروس كورونا، مؤديًا إلى مزيد من التأخير. وبعد استئناف العمل أعلنت ناسا أن موعد الإطلاق أجل إلى 31 أكتوبر 2021. وأدت مشكلات متعلقة بمركبة الإطلاق أريان 5 إلى تأخير موعد الإطلاق إلى 25 ديسمبر 2021.

 

تلسكوب جيمس ويب الفضائي كاملا بدرعهِ الواقي من الشمس

محتويات 1 الميزات 1.1 حماية الدرع الشمسي

1.2 البصريات

1.3 الأدوات العلمية

1.4 حافلة المركبة الفضائية

2 المدار

3 المقارنة مع تلسكوبات أخرى

4 التاريخ 4.1 الخلفية

4.2 التطوير

4.3 الإنشاء بدأ عام 1995 واطلق في 2021/12/25

4.4 مشكلات التكلفة والجدول الزمني

4.5 الشراكة

4.6 العروض العامة

4.7 الجدل حول الاسم

5 المهمة 5.1 الإطلاق وطول المهمة

5.2 علم فلك الأشعة تحت الحمراء

5.3 الدعم الأرضي والعمليات

5.4 ما بعد الإطلاق

6 تخصيص وقت الرصد 6.1 برنامج الرصد المبكر للعلوم

6.2 برنامج الراصد العام

7 النتائج العلمية

8 انظر أيضًا

9 المراجع

10 وصلات خارجية

الميزات

 

مخطط بياني تقريبي لنفاذية غلاف الأرض الجوي (أو العتامة) لأطوال موجية مختلفة للإشعاع الكهرومغناطيسي، بما في ذلك الضوء المرئي.

 

إعداد إطلاق تلسكوب جيمس ويب في أريان 5.

تلسكوب جيمس ويب الفضائي لديه كتلة منتظَرة بنحو نصف كتلة تلسكوب هابل الفضائي، ولكن مرآته الأساسية، عاكس البيريليوم المطلي بالذهب بقُطر 6.5 مترًا (21 قدمًا) سوف تحتوي على مساحة تجميع أكبر بسِت مرات، 25.4 متر مربع (273 قدم2)، باستخدام 18 مرآة سداسية مع وجود تعتيم قدره 0.9 متر مربع (9.7 قدم2) لدعامات الدعم الثانوية.

جهز تلسكوب جيمس ويب بأجهزة قياس الأشعة تحت الحمراء القريبة، ولكن يمكنه أيضًا رؤية الضوء المرئي البرتقالي والأحمر، بالإضافة لمنطقة منتصف الأشعة تحت الحمراء، وهذا يعتمد على الأجهزة المزود بها. التصميم يعطي أهمية خاصة لنطاق الأشعة القريبة إلى منتصف تحت الحمراء لثلاثة أسباب رئيسية: الأجرام ذات الانزياح الأحمر العالي تتحول انبعاثاتها المرئية إلى الأشعة تحت الحمراء.

الأجرام الباردة مثل أقراص الحطام والكواكب تبعث بشكل أكبر في الأشعة تحت الحمراء.

هذا النطاق تصعب دراسته من الأرض بواسطة التلسكوبات الفضائية الموجودة مثل هابل.

التلسكوبات الأرضية تنظر من خلال غلاف الأرض الجوي، الذي هو معتم في العديد من نطاقات الأشعة تحت الحمراء (انظر الشكل الخاص بامتصاص الغلاف الجوي أعلاه). وحتى عندما يكون الغلاف الجوي شفافًا، فإن العديد من المُركَّبات الكيميائية الموجودة في الهواء، مثل الماء وثنائي أكسيد الكربون والميثان موجودة أيضًا في غلاف الأرض الجوي وهو ما يُعقِّد التحليل بشكل كبير. ولا تستطيع التلسكوبات الفضائية الحالية مثل هابل دراسة هذه النطاقات لأنها مراياها ليست «باردة بدرجة كافية» (مرآة هابل يتم الحفاظ على درجة حرارتها عند حوالي 15 °م (288 ك؛ 59 °ف))، وبالتالي فإن التلسكوب نفسه يشع بقوة في نطاقات الأشعة تحت الحمراء ويعرقل بذلك الرصد والتصوير.سوف يعمل تلسكوب جيمس ويب بالقرب من نقطة لاجرانج L2 الخاصة بمدار الشمس-الأرض، على مسافة تبعد حوالي 1,500,000 كيلومتر (930,000 ميل) خارج مدار الأرض. وبالمقارنة، تلسكوب هابل يدور على ارتفاع 550 كيلومتر (340 ميل) فوق سطح الأرض، والقمر يبعد 384,400 كيلومتر (238,900 ميل) عن الأرض. هذه المسافة تجعل إصلاح أو تحديث أجهزة تلسكوب جيمس ويب بعد إطلاقه مستحيلًا تقريبًا بواسطة سفن الفضاء أو رواد فضاء أثناء مرحلة التشغيل للتلسكوب. يمكن للأجرام القريبة من نقطة لاجرانج أن تدور حول الشمس بالتزامن مع الأرض، مما سيسمح للتلسكوب بالبقاء على مسافة ثابتة تقريبًا، واستخدام درع شمسي واحد لمنع الحرارة والضوء من الشمس والأرض. وهذا الترتيب سيحافظ على درجة حرارة التلسكوب أقل من 50 ك (−223 °م؛ −370 °ف)، وهذا ضروري من أجل رصد الأشعة تحت الحمراء.

 

عرض ثلاث أرباع التلسكوب من الأعلى

 

الجانب السفلي (المواجه للشمس)

حماية الدرع الشمسي

 

وحدة اختبار الدرع الشمسي مكدسة وموسعة في منشأة نورثروب جرومان في كاليفورنيا سنة 2014.

من أجل الرصد في طيف الأشعة تحت الحمراء، يجب إبقاء درجة حرارة تلسكوب جيمس ويب أقل من كلفن؛ وإلا فإن الأشعة تحت الحمراء الصادرة من التلسكوب نفسه ستطغى على أجهزته وتصبح ارصاده ليست واضحة. لذلك يُستخدم درعًا شمسيًا كبيرًا لحجب الضوء والحرارة الصادرة من الشمس والأرض والقمر. موقع التلسكوب بكل أجهزته بالقرب من نقطة L2 الخاصة بمدار الشمس-الأرض حيث تبقي جميع تلك الأجرام الثلاثة على نفس الجانب من التلسكوب الفضائي في جميع الأوقات. ومدار الطوق حول النقطة L2 يتجنب ظِل الأرض والقمر، مما يحافظ على بيئة ثابتة للدرع الشمسي والمصفوفات الشمسية من أجل توليد الطاقة الكافية لتشغيل جميع أجهزته. يحافظ الدرع على ثبات درجة حرارة المعدات الموجودة على الجانب المُظلم، وهذا بالغ الأهمية للحفاظ على المحاذاة الدقيقة لقطاعات المرآة الأساسية.الدرع الشمسي المكوَّن من خمس طبقات، كل طبقة رقيقة مثل رقة شَعر الإنسان، مُكوَّنة من كابتون E وهو فيلم بوليميد متوفر تجاريًا من قِبل شركة دوبونت، مع أغشية مطلية خصيصًا بالألومنيوم على كلا الجانبين ومغطاة بالسيليكون على الجانب المواجه للشمس على أكثر الطبقتين سخونة لعكس حرارة الشمس مرة أخرى إلى الفضاء. وقد كانت التمزقات العرضية لتركيب الفيلم الدقيق أثناء الاختبار في سنة 2018 من بين العوامل التي أدت إلى تأخير المشروع.صمم درع الشمس ليطوى اثنتى عشر مرة بحيث يتلائم مع إنسيابية الحمولة الصافية لصاروخ أريان 5، والذي يبلغ قُطره 4.57 متر (15.0 قدم) وطوله 16.19 متر (53.1 قدم). وبمجرد أن ينشر عند النقطة L2، سوف يُفتَح إلى 14.162 متر × 21.197 متر (46.46 قدم × 69.54 قدم). وقد جمع الدرع الشمسي يدويًا في مانتيك إنترناشونال في هنتسفيل بألاباما، قبل تسليمه إلى نورثروب جرومان في ريدوندو بيتش بكاليفورنيا للاختبار.

البصريات

 

مهندسون يقومون بتنظيف مرآة اختبار بثلج ثنائي أكسيد الكربون، سنة 2015.

 

تجميع المرآة الرئيسية في مركز جودارد لرحلات الفضاء في مايو 2016.

مرآة تلسكوب جيمس ويب الأساسية هي عاكس بيريليوم قُطرها 6.5 متر مغطاة بالذهب ومساحة تجميعها تبلغ 25.4 متر مربع (273 قدم2). وإذا بُنيَت كمرآة واحدة كبيرة، فستكون كبيرة جدًا بالنسبة لمركبات الإطلاق الموجودة حاليًا. لذلك تتكون المرآة من 18 قطعة سداسية الأضلاع تُفتح بعد إطلاق التلسكوب. يستخدم استشعار الواجهة الموجية في مستوى الصورة من خلال خوارزمية جيرشبرج-ساكستون من أجل وضع أجزاء المرآة في الموقع الصحيح باستعمال محركات دقيقة للغاية. وبعد هذا الإعداد الأولي سبحتاج فقط إلى إجراء تحديثات عرضية كل بضعة أيام للحفاظ على التركيز الأمثل. وهذا على عكس التلسكوبات الأرضية، على سبيل المثال تلسكوبات كيك والتي تضبط باستمرار قياس أجزاء المرآة الخاصة بهم باستخدام البصريات النشطة للتغلب على تأثيرات جاذبية الرياح. بينما سوف يستخدم تلسكوب ويب 126 محركًا صغيرًا لضبط البصريات من حين لآخر نظرًا لعدم وجود الكثير من الاضطرابات البيئية للتلسكوب في الفضاء.التصميم البصري لتلسكوب جيمس ويب هو عدسة لابؤرية ثلاثية المرآة،

والتي تستخدم المرايا المنحنية الثانوية والثالثية لتقديم صور خالية من الانحرافات البصرية على مدى مجال واسع. وبالإضافة إلى ذلك توجد مرآة توجيه سريع يمكنها ضبط وضعها عدة مرات في الثانية لتوفير استقرار الصورة.

شركة بول للفضاء الجوي والتقنيات هي المتعاقد الفرعي البصري الأساسي لمشروع تلسكوب جيمس ويب الفضائي، بقيادة المتعاقد الرئيسي نورثروب جرومان لأنظمة الفضاء الجوي، بموجب عقد من مركز جودارد لرحلات الفضاء التابع لناسا، في جرينبيلت بماريلاند. صنعت الثمانية عشر جزءًا من المرآة الرئيسية، ومرايا التوجيه الثانوية والثالثية والدقيقة، بالإضافة إلى نسخة احتياطية مصطنعة ومصقولة بواسطة شركة بول للفضاء الجوي والتقنيات بناءًا على خامات أجزاء البيريليوم المصنعة من قِبل العديد من الشركات من بينها أكسيس وبراش ويلمان ومختبرات تينسلي.ركب الجزء الأخير من المرآة الرئيسية في 3 فبراير 2016، والمرآة الثانوية في 3 مارس 2016.

الأدوات العلمية

 

نموذج NIRCam

 

نموذج NIRSpec

 

نموذج مصغر MIRI 1:3

وحدة الأدوات العلمية المتكاملة (ISIM) هي إطار يوفر الطاقة الكهربائية، وموارد الحوسبة، وقدرة التبريد بالإضافة إلى الاستقرار الهيكلي لتلسكوب ويب. صُنِعت من مُركَّب الجرافيت-الإيبوكسي المرتبط بالجانب السفلي من بِنية التلسكوب. وتحمل أربعة أدوات علمية وكاميرا إرشادية. كاميرا نيركام (كاميرا الأشعة تحت الحمراء القريبة) هي جهاز تصوير بالأشعة تحت الحمراء يغطي طيفًا يتراوح من حافة الضوء المرئي (0.6 ميكرومتر) وحتى الأشعة القريبة من تحت الحمراء (5 ميكرومتر). ستخدم NIRCam أيضًا كمستشعر واجهة الموجة للمرصد، وهو مطلوب لاستشعار واجهة الموجة وأنشطة التحكم. وقد صُنِعت من قِبل فريق بقيادة جامعة أريزونا، مع الباحثة الرئيسية مارسيا جيه ريكي. والشريك الصناعي هو مركز التكنولوجيا المتقدمة التابع لشركة لوكهيد-مارتن الموجود في بالو ألتو بكاليفورنيا.مطياف نير (سبكتروجراف الأشعة تحت الحمراء القريبة) سيقوم أيضًا بقياس الطيف على نفس نطاق الطول الموجي. صُنع بواسطة وكالة الفضاء الأوروبية في المركز الأوروبي لأبحاث وتكنولوجيا الفضاء في نوردفايك بهولندا. يضم فريق التطوير القائد أعضاء من إيرباص للدفاع والفضاء، وأوتوبرون وفريدريشهافن بألمانيا، ومركز جودارد لرحلات الفضاء، مع بيير فيرويت (مدرسة ليون نورمال العليا) كعالِم مشروع NIRSpec. يوفر تصميم NIRSpec ثلاثة أوضاع للرصد: وضع منخفص الدقة باستخدام منشور، ووضع R~1000 متعدد الأجرام، ووحدة R~2700 حقل متكاملة أو وضع القياس الطيفي طويل الشق. تبدل الأوضاع عن طريق تشغيل آلية الاختيار المسبق لطول الموجة والتي تسمى مجموعة عجلة المرشَّح، واختيار عنصر التشتت المقابل (المنشور أو الشبكة) باستخدام آلية تجميع عجلة الشبكة. تعتمد كلا الآليتين على آليات ISOPHOT الناجحة لمرصد الأشعة تحت الحمراء الفضائي. يعتمد وضع متعدد الأجرام على آلية مصراع دقيق معقدة تسمح بالرصد المتزامن لمئات الأجرام الفردية في أي مكان في مجال رؤية NIRSpec. تم تصميم الآليات وعناصرها البصرية ودمجها واختبارها بواسطة كارل زايس بألمانيا، بموجب عقد من أستريوم.سوف تقيس MIRI (جهاز قياس الأشعة تحت الحمراءالمتوسطة) نطاق الطول الموجي من منتصف إلى الأشعة تحت الحمراء الطويلة من 5 إلى 27 ميكرومتر. تحتوي على كل من كاميرا الأشعة تحت الحمراء وسبكترومتر التصوير. طور MIRI كتعاون بين ناسا واتحاد من البلدان الأوروبية، وبقيادة جورج إتش ريكي (جامعة أريزونا) وجيليان رايت (مركز المملكة المتحدة لتكنولوجيا علم الفلك في ادنبره باسكتلندا، وهو جزء من مجلس منشآت العلوم والتكنولوجيا (STFC)). تتميز MIRI بآلية عجلات مماثلة لـ NIRSpec والتي طُوِّرت وصُنِعت أيضًا بواسطة كارل زايس بموجب عقد من معهد ماكس بلانك للفلك بهايدلبرج بألمانيا. سلم تجميع المختبر البصري المكتمَل من MIRI إلى مركز جودراد لرحلات الفضاء في منتصف سنة 2012 من أجل الاندماج النهائي في وحدة أدوات العلوم المتكاملة. وMIRI يجب ألا تتجاوز درجة حرارتها 6 كلفن، والمُبَرِّد الميكانيكي بغاز الهيليوم الموجود على الجانب الدافئ للدرع البيئي يوفر هذا التبريد.يستخدم FGS/NIRISS (مستشعر التوجيه الدقيق ومصور الأشعة القريبة من تحت الحمراء والمطياف اللا شَقّي) بقيادة وكالة الفضاء الكندية تحت إشراف عالِم المشروع جون هاتشينجر (معهد هيرتسبيرج للفيزياء الفلكية، المجلس القومي للبحوث بكندا) لتحقيق الاستقرار في خط رؤية المرصد خلال الرصد العلمي. تُستحدم القياسات بواسطة FGS للتحكم في الاتجاه العام للمركبة الفضائية وقيادة مرآة التوجيه الدقيقة لتثبيت الصورة. تقدم وكالة الفضاء الكندية أيضًا وحدة التصوير بالأشعة القريبة من تحت الحمراء المطياف اللا شَقّي (NIRISS) للتصوير الفلكي والتحليل الطيفي في نطاق الطول الموجي من 0.8 إلى 5 ميكرومتر، بقيادة الباحث الرئيسي رينيه دويون في جامعة مونتريال. ونظرًا لأنه يتم تركيب NIRISS فعليًا مع FGS، فغالبًا ما يشار إليهما على أنهما وِحدة واحدة، ومع ذلك فهما تخدمان أغراضًا مختلفة تمامًا، حيث أن إحداهن هي أداة علمية والأخرى هي جزء من البنية التحتية الداعمة للمرصد.

تتميز كل من NIRCam وMIRI براصدات الاكليل التي تحجب أضواء النجوم من أجل رصد الأهداف الخافتة مثل الكواكب خارج النظام الشمسي والأقراص النجمية الدوارة بالغة القُرب من النجوم الساطعة.توفر كاشفات الأشعة تحت الحمراء للوحدات NIRCam وNIRSpec وFGS وNIRISS بواسطة مستشعرات تيليدين للتصوير (شركة روكويل العلمية سابقًا). يستخدم كل من وحدة الأدوات العلمية المتكاملة (ISIM) الخاصة بتلسكوب جيمس ويب الفضائي (JWST) وفريق هندسة قيادة ومعالجة البيانات (ICDH) سبيسواير لإرسال البيانات بين الأدوات العلمية وأدوات معالجة البيانات.

حافلة المركبة الفضائية

 

رسم تخطيطي لحافلة المركبة الفضائية، الألواح الشمسية باللون الأخضر والألواح ذوات اللون البنفسجي الفاتح هي مشعاعات.

حافلة المركبة الفضائية هي عنصر الدعم الأساسي لتلسكوب جيمس ويب الفضائي، الذي يستضيف عددًا كبيرًا من الحوسبة والاتصالات والدفع والأجزاء الهيكلية، والذي يجمع الأجزاء المختلفة من التلسكوب معًا، وهو يشكل جنبًا إلى جنب مع الدرع الشمسي عنصر المركبة الفضائية في التلسكوب الفضائي.

العنصران الرئيسيان الآخران من تلسكوب ويب هما وحدة الأدوات العلمية المتكاملة (ISIM) وعنصر التلسكوب البصري (OTE). والمنطقة 3 من ISIM موجودة أيضًا بداخل حافلة المركبة الفضائية؛ وتتضمن النظام الفرعي قيادة ومعالجة البيانات (ICDH) وMIRI المُبَرِّد.

حافلة المركبة الفضائية مُتصلة بعنصر التلسكوب البصري عبر تجميع البرج القابل للنشر، والذي هو أيضًا مُتصل بالدرع الشمسي.يزن هيكل الحافلة الفضائية 350 كجم (770 رطلًا)، ويجب أن يتحمل ثقل التلسكوب الفضائي الذي يزن 6200 كجم (13700 رطلًا). وهو مصنوع بشكل أساسي من مادة الجرافيت المُركَّبة. جمع في كاليفورنيا، واكتمل التجميع في سنة 2015، ثم دمج مع بقية التلسكوب الفضائي قبل إطلاقه المخطط له في 2021. يمكن لحافلة المركبة الفضائية تدوير التلسكوب بدقة توجيه تبلغ ثانية قوسية واحدة، وعزل الاهتزاز حتى 2 ملي ثانية قوسية.تقع الحافلة الفضائية على الجانب «الدافئ» المواجه للشمس وهي تعمل عند درجة حرارة تقارب الـ300 ك (27 °م؛ 80 °ف). كل شيء على الجانب المواجه للشمس يجب أن يكون قادرًا على التعامل مع الظروف الحرارية لمدار الطوق الخاص بتلسكوب جيمس ويب، والذي يوجد جانب واحد منه في ضوء الشمس بشكل مستمر بينما الجانب الآخر موجود في ظِل الدرع الشمسي للمركبة الفضائية.جانب آخر مهم من الحافلة الفضائية هو الحوسبة المركزية، وتخزين المعلومات، ومعدات الاتصالات. يوجه المعالج والبرمجيات مجموعة البيانات من وإلى الأدوات، وإلى ذاكرة الحالة الصلبة المركزية، ونظام الراديو الذي يرسل البيانات مرة أخرى إلى الأرض ويتلقّى الأوامر. يتحكم الحاسوب أيضًا في التوجيه ولحظة المركبة الفضائية، حيث يأخذ بيانات المستشعر من الجيروسكوبات ومتعقب النجوم، ويرسل الأوامر اللازمة إلى عجلات التفاعل أو الدافعات.

المدار

شكل متحرك يوضح مدار تلسكوب جيمس ويب الفضائي وهو يحوم في دائرة حول نقطة لاغرانج L2 .

تقع نقطة لاغرانج L2 على بعد 5و1 مليون كيلومتر خلف الأرض . ويحوم التلسكوب حول تلك النقطة في مدار عمودي على الخط الواصل بين L2 والأرض (شاهد الفيديو التوضيحي).

المقارنة مع تلسكوبات أخرى

 

مقارنة مرآة جيمس ويب مع مرآة هابل الرئيسية

 

سوف تكون هندسة كاليستو لتلسكوب سافير (SAFIR) خليفة لسبيتزر، والذي سيتطلب تبريدًا سلبيًا أكبر من جيمس ويب (5 كلفن).تعود الرغبة في الحصول على تلسكوب فضائي يعمل بالأشعة تحت الحمراء إلى عقود ماضية. في الولايات المتحدة، كان هناك تخطيط لمرفق تلسكوب الأشعة تحت الحمراء (Shuttle Infrared Telescope Facility) خلال تطوير مكوك الفضاء، ولقد اعترف بإمكانية علم فلك الأشعة تحت الحمراء في ذلك الوقت. وبالمقارنة مع التلسكوبات الأرضية، كانت المراصد الفضائية في حِل من امتصاص الغلاف الجوي لضوء الأشعة تحت الحمراء. وفتحت المراصد الفضائية «سماء جديدة» كاملة لعلماء الفلك.«الغلاف الجوي الرقيق فوق ارتفاع الطيران الاسمي الذي يبلغ 400 كم ليس له أي امتصاص قابل للقياس بحيث يمكن للكاشفات التي تعمل بجميع الأطوال الموجية من 5 ميكرومتر إلى 1000 ميكرومتر تحقيق حساسية إشعاعية عالية.» – إس جي مكارثي وجي دبليو أوتيو، 1978ومع ذلك، فإن تلسكوبات الأشعة تحت الحمراء لها عيب: فهي تحتاج إلى البقاء شديدة البرودة، وكلما إزداد الطول الموجي للأشعة تحت الحمراء، كلما احتاجت إلى أن تكون أكثر برودة. وإذا لم تكن، فإن الحرارة الخلفية للجهاز نفسه تطغى على أجهزة الكشف، وهو ما يجعلها عمياء بشكل فعال. ويمكن التغلب على هذه المشكلة من خلال التصميم الدقيق للمركبة الفضائية، وبشكل خاص عن طريق وضع التلسكوب في ديوار مع مادة شديدة البرودة، مثل الهيليوم السائل، وهذا يعني أن معظم التلسكوبات التي تعمل بالأشعة تحت الحمراء لها عمر محدود وقصير بسبب المُبَرِّد الخاص بها، وهو يتراوح بين بضعة أشهر وبضعة سنوات على الأكثر.

 

ملصق تلسكوب جيمس ويب الفضائي الرسمي

تلسكوبات وأدوات فضائية مختارة

الاسم السنة الطول الموجي

(ميكرومتر) الفتحة

(متر) التبريد

IRT 1985 1.7–118 0.15 الهيليوم

مرصد الأشعة تحت الحمراء الفضائي (ISO)

1995 2.5–240 0.60 الهيليوم

المحلل الطيفي التصويري للتلسكوب الفضائي لهابل (STIS) 1997 0.115–1.03 2.4 Passive

كاميرا قريبة من الأشعة تحت الحمراء والمطياف متعدد الأجرام لهابل (NICMOS) 1997 0.8–2.4 2.4 نيتروجين، ومُبَرِّد لاحقًا

تلسكوب سبيتزر الفضائي 2003 3–180 0.85 الهيليوم

كاميرا واسعة المجال 3 لهابل (WFC3) 2009 0.2–1.7 2.4 Passive, and thermo-electric

مرصد هيرشل الفضائي 2009 55–672 3.5 الهيليوم

تلسكوب جيمس ويب الفضائي 2021 0.6–28.5 6.5 Passive, and cryocooler (MIRI)

التاريخ

الخلفية

التطوير

الإنشاء بدأ عام 1995 واطلق في 2021/12/25

مشكلات التكلفة والجدول الزمني

الشراكة

العروض العامة

الجدل حول الاسم

المهمة

تلسكوب جيمس ويب الفضائي له أربعة أهداف رئيسية: البحث عن الضوء المنبعث من النجوم والمجرات الأولى التي تكونت في الكون بعد الانفجار العظيم.

دراسة تكون وتطور المجرات.

فهم تكون النجوم والأنظمة الكوكبية.

دراسة الأنظمة الكوكبية وأصول الحياة.

يمكن تحقيق هذه الأهداف بشكل أكثر فعالية من خلال الرصد بواسطة الضوء القريب من الأشعة تحت الحمراء بدلًا من الضوء في الجزء المرئي من الطيف. لهذا السبب لن تقيس أدوات تلسكوب جيمس ويب الضوء المرئي أو فوق البنفسجي مثل تلسكوب هابل، ولكن ستكون لديه قدرة أكبر على ممارسة علم فلك الأشعة تحت الحمراء. تلسكوب جيمس ويب سيكون حساسًا لنطاقات من الأطوال الموجية تبدأ من 0.6 (الضوء البرتقالي) إلى 28 ميكرومتر (الأشعة تحت الحمراء العميقة عند حوالي 100 ك (−173 °م؛ −280 °ف))

يمكن استخدام تلسكوب جيمس ويب لجمع معلومات حول الضوء الخافت لنجم تابي، الذي اكتُشف سنة 2015، وله بعض خصائص منحنى الضوء غير الطبيعية.

الإطلاق وطول المهمة

علم فلك الأشعة تحت الحمراء

الدعم الأرضي والعمليات

ما بعد الإطلاق

تخصيص وقت الرصد

برنامج الرصد المبكر للعلوم

برنامج الراصد العام

النتائج العلمية

 

أول صورة ملونة{انظر اسفل الصفحة} من تلسكوب جيمس ويب، تجمع مجرة SMACS J0723.3-7327.

في 12 يوليو 2022 كشف الرئيس جو بايدن عن أول صورة ملونة من تليسكوب ويب وكذلك بيانات طيفية، والذي يمثل أيضًا البداية الرسمية لعمليات ويب العلمية العامة، أيضاً أعلنت وكالة ناسا عن قائمة الملاحظات المستهدفة وهي:

سديم القاعدة

WASP-96b

سديم الحلقة الجنوبي

خماسية ستيفان

عنقود مجرات SMACS 0723، عدسة الجاذبية صورة بعيدة المدى للمجرات

====

مرصد كيك

من ويكيبيديا، الموسوعة الحرة

مرصد كيك

 

البلد الولايات المتحدة

 

الاحداثيات 19.8263°N 155.47441°W

الارتفاع 4145 متر

أول استخدام 24 نوفمبر 1993، و23 أكتوبر 1996

طراز المرقاب تلسكوب بصري، ومقراب عاكس، ومرصد فلكي

قطر 10 متر

دقة الزاوية 0.04 ثانية قوسية، و0.4 ثانية قوسية

منطقة التحصيل 76 متر مربع

الطول البؤري 17.5 متر

الحامل مقراب

الموقع على الشبكة الموقع الرسمي، والموقع الرسمي 

مرصد كيك يتكون من مرصدين

مرصد دبليو. إم. كيك غالباً ما يعرف بـ مرصد كيك، (بالإنجليزية: W.

M. Keck)‏. هو عبارة عن مرصدين يقعان على ارتفاع 4.145 م على قمة ماونا كيا في هاواي. المرايا الرئيسية لكلا المرصدين يبلغ قطرها 10 متر مما يجعلهما أكبر مرصدين بصريين في العالم.

تم بنائه بعد أن منح هاورد ب. كيك رئيس مؤسسة دبليو. إم كيك مبلغ 70 مليون دولار للقيام بتصميم المرصد وإنشائه. تم بناء المرصد الأول «كيكفي عام 1993 والثاني «كيك II» في عام 1996.

========

مسبار فضائي

من ويكيبيديا، الموسوعة الحرة

 

مسابير الفضاء النشطة في فبراير 2016.

المسبار الفضائي هو مركبة فضائية آلية بدون طاقم ولا تدور حول الأرض بل تستعمل لاستكشاف الفضاء الخارجي، حيث يتم إطلاقها في الفضاء الخارجي بهدف استكشاف واحد أو أكثر من الأجرام السماوية (كوكب، قمر، مذنب، كويكب) أو استكشاف الوسط بين الكواكبي أو الوسط بين النجمي. تتكون حمولتها من أدوات علمية من أنواع مختلفة (على غرار كاميرات متطورة، أجهزة المطياف، مقياس الطاقة الإشعاعية، ومقياس المغناطيسية...) تمكن العلماء من جمع البيانات في الموقع أو على مسافة باستعمال كاميرات ومجسات، ليتم إرسالها فيما بعد إلى الأرض. إذ كان مسبار الفضاء بصفة عامة كثيرا ما يكون قريبا من قمر اصطناعي يدور حول الأرض، فإن لمسابير الفضاء عدة خصائص تجعل منها آلات خاصة: طول المسافة بين المشغلين على الأرض والآلة (المسبار)، تفرض استقلالية كبيرة وفي الآن ذاته توفر نظام اتصالات قوي ودقيق؛

تعقيد المهام التي ينبغي للمسبار القيام بها: على سبيل المثال الهبوط على الأجرام السماوية التي تملك غلافا جويا أو قوة جاذبية منخفضة جدا، التوجيه الدقيق للأدوات صوب أهداف سريعة الحركة، جمع العينات وإجراءات التخزين الاحتياطي للبيانات في حالة الفشل؛

دقة وتعقيد الملاحة؛

العمل في ظل التعرض الأشعة الكونية؛

العمل في ظل ضعف الطاقة الشمسية المتاحة، خاصة إذا كان الهدف من إرسال المسبار هو جمع بيانات حول الكواكب الخارجية؛

تحمل درجات حرارة قصوى أثناء أداء مهمات إلى الكواكب الخارجية (خارج المجموعة الشمسية) أو تحت مدار عطارد؛

مدة البعثة التي يمكن أن تبدأ بعد مرحل العبور وتمتد إلى عشرات السنوات.

تتطلب عملية إرسال مسبار الفضاء إلى أحد الكواكب دقة عظيمة في زاوية الانطلاق من الأرض، حيث تصل دقة هذة الزاوية إلى 1 ثانية قوسية. كما تتطلب أيضا توجيه المسبار عبر المسار بدقة بالغة، يستعان في ذلك بظاهرة دوبلر وتغير مدة تقدم الإشارة. تسمح كل تلك الطرق بالإضافة إلى أخرى بتعيين مكان المسبار في الفضاء بدقة تصل إلى 1 متر بصرف النظر عن بعده عن الأرض.

يحصل المسبار على طاقته انطلاقا من مراكم يشحن الألواح الشمسية إذا كان الهدف هو القمر أو الكواكب الداخلية للمجموعة الشمسية مثل عطارد والمريخ. في حين إذا كان المسبار مصمما للإستخدام لفترة وجيزة، يتم الاستعانة عندها بالبطاريات لإمداده بالطاقة الكهربائية. أما إذا كان المسبار مصمما لإرساله إلى كواكب خارجية بعيدة تضعف فيها أشعة الشمس اللازمة لتوليد الطاقة من الألواح الشمسية يتم في هذه الحالة الاستعانة ببطاريات تعمل بالنظائر المشعة.

محتويات 1 تصميم بعثة المسبار الفضائي

2 اختيار المشروع

3 أنواع مسابير الفضاء المختلفة 3.1 مسبار التحليق فوق الأجسام السماوية

3.2 المسبار المداري

3.3 مسبار الغلاف الجوي

3.4 مسبار الإنزال

3.5 المسبار المتجول أو الروفر

3.6 بعثة العودة بالعينات إلى الأرض

3.7 المخترق

3.8 أقمار الاتصالات

3.9 العارض التكنولوجي

4 أبرز المسابير ومهامها 4.1 مسابير القمر

4.2 مسابير عطارد

4.3 مسابير الزهرة

4.4 مسابير المريخ

4.5 مسابير المشتري وزحل

4.6 مسابير أورانوس ونبتون

4.7 مسابير بلوتو

5 انظر أيضًا

6 مصادر

تصميم بعثة المسبار الفضائي

على غرار أي مشروع فضائي آخر، تنقسم عملية التطوير والتحكم التشغيلي للمسبار الفضائي إلى عدة مراحل، تكون خصائصها (الواردة والمسلم بها) شائعة لدى وكالات الفضاء المختلفة.

مراحل مختلفة من مشروع فضاء وفقا للمركز الوطني الفرنسي للدراسات الفضائية

المرحلة عنوان المرحلة الهدف الاهداف المحققة (التسليم) استعراض نهاية المرحلة الملاحظات

0 تحديد الاحتاجات تحديد الاحتياجات

البحث عن سبل تحقيقها

تقييم التكاليف والمواعيد النهائية استعراض تصميم المشروع

A الجدوي تحسين الاحتياجات

تقييم السبل تحديد الحل استعراض المتطلبات الأولية

B التحديد الأولي التحديد الأولي المسبق للمشروع تأكيد الجدوى، وجعل تعريف أولي

القيام بتحديد أولي مسبق مراجعة متطلبات النظام

ومراجعة التحديدات الأولي

C التحديد الدقيق التحديد الدقيق للمشروع صياغة دفتر تحملات لمرحلة الإنتاج مراجعة نقدية لمراحل التحديد (الأولي والدقيق)

D الإنتاج و/أو التأهيل على الأرض التصنيع وإجراء التجارب تسليم المركبة الفضائية مراجعة مدى تأهيل المركبة

القبول

E الاستعمال تحقق ملاءمة التشغيل وتشغيل الجهاز مراجعة الجاهزية التشغيلية

مراجعة ملاءمة الطيران

مراجعة التشغيل تبدأ هذه المرحلة مع إطلاق المسبار الفضائي

F التقاعد (الخروج من الخدمة) إزالته من الخدمة دون إزعاج للبيئة المحيطة نهاية عمر المشروع

اختيار المشروع

في الوقت الذي تتضاعف فيه مواضيع الدراسة بالموازاة مع التقدم العلمي، تظل بعثات استكشاف النظام الشمسي باهظة التكلفة ونادرة إلى حد ما. لذلك فإن عملية الاختيار تكون دائما صارمة وكثيرة التنظيم. تعتمد وكالات الفضاء الرئيسية حول العالم على تحديد إستراتيجية الخاصة لاستكشاف الفضاء على الوثائق التي تنتجها السلطات العلمية المتخصصة الرئيسية. في هذا السياق تعتمد وكالة ناسا في استراتيجياتها على منشور المسح العشري للعلوم الكوكبية الصادر عن مجلس البحوث الوطني الأمريكي على رأس كل عشر سنوات، في وقت كانت تمتلك فيه وكالة الفضاء الأوروبية وثيقة مماثلة أعدت خصيصا لبرنامجها العلمي «الرؤية الكونية» الذي أنشئ في سنة 2004 للمشاريع التي يتنتهي أجلها في الفترة الممتدة ما بين 2015 و2025. المركز الوطني للدراسات الفضائية من جهته يفعل نفس الشئ؛ على الرغم من توفره على ميزانية بحثية لا تسمح له بإجراء استكشاف للنظام الشمسي بشكل مستقل. في هذا الصدد، يمكن لوكالة الفضاء إطلاق دعوة للأفكار تليها دعوة أخرى لتقديم المقترحات تؤدي إلى اختيار وتطوير البعثة. ليبدأ كل ذلك في إطار ميزانية محددة مسبقا. عند ناسا بند الميزانية هذا متاحة بشكل دوري كما هو الحال في برنامجي الحدود الجديدة أو ديسكفري، من أجل السماح بتطوير البعثات خلال كل عقد على حدى. تختار وكالة الفضاء الأوروبية هي الأخرى، والتي لا تملك سوى جزء ضئيل من ميزانية ناسا، البعثات قبل وقت طويل من إطلاقها. إلا أنه في كثير من الأحيان يتم تأجيل تاريخ الإطلاق لمواجهة قيود الميزانية. تشمل الفرق التي تستجيب للمناقصات المهندسين والعلماء على حد سواء. حيث تقدم مقترحات تفصل بين الأهداف العلمية والخصائص التقنية بالإضافة إلى الجوانب المالية. يتم اختيار هذه الفرق في النهاية من قبل اللجان العلمية التي تأخذ في الاعتبار الاستراتيجية العلمية طويلة الأجل التي وضعتها الوثائق التي تنتجها السلطات الأكاديمية في بداية هذه العملية.

أنواع مسابير الفضاء المختلفةتحدد طريقة الاستكشاف المستخدمة في مسابير الفضاء بشكل أساسي استنادا للأهداف العلمية المتوخاة والقيود المفروضة على التكاليف. على سبيل المثال، إذا كانت دراسة كوكب معين هي الأولى من نوعها، يكون الهدف الأسمى هو وضع المسبار في مداره حول الكوكب لإجراء ملاحظات على الكوكب بأسره على مدى فترات طويلة من الزمن. لكن في هذه الحالة تتطلب عملية وضع المسبار في المدار إضافة أجهزة دفع تتطلب تكلفة كبيرة. لهذا السبب يتم استعراض لمحة بسيطة عن الهدف واراء البعثة بغرض الاستفادة المثلى من المسار باستعمال أدوات علمية تمكن من جمع أكبر قدر من البيانات. في الأخير، تبقي عملية اختيار طريقة الاستكشاف مرهونة بمستوى خبرة الأمة أو مجموعة الدول التي تطور مسبار الفضاء. أقل مستوى من الصعوبة هو تحلق المسبار فوق كوكب داخلي تابع للنظام الشمسي. لكن عملية انزال المسبار على الكوكب لطالما كانت تعتبر تحديا كبيرا لوكالات الفضاء بصفة خاصة ناسا، حيث ان ثلثي الرحلات التي ارسلت هذه الأخيرة في الماضي إلى هذا كوكب المريخ على سبيل المثال باءت بالفشل نتيجة لاحتراق المركبات التي كانت تحمل المسابير لدى محاولتها اختراق جو المريخ. هذا الواقع سرعان ما تغير في 6 أغسطس 2012 بعدما نجت ناسا في انزال روفر (كيوريوسيتي روفر) مستقل جزئيا على سطح كوكب المريخ، الذي يتميز بغلاف جوي وبجاذبية قوية.اعتمادا على طريقة الاستكشاف المستخدمة، يمكن ترتيب مسابير الفضاء في 9 فئات رئيسية. يمكن لبعض المسابير الفضائية الجمع بين عدة فئات في آن واحد على سبيل المثال مسابير برنامج فايكينغ (فايكينغ 1 وفايكينغ 2).

مسبار التحليق فوق الأجسام السماوية 

مسبارفيغا

نموذج لمسابير فوياجر.

يمكن تصميم مسابير الفضاء للتحليق فوق الأجسام السماوية وتصوير نظر عامة عنها بغرض دراستها. في أبسط الحالات يجب أن وضع هذه المسابير من الأرض على مسار دقيق للقيام بمهامها مع عدد قليل من التصحيحات الصغيرة أثناء العبور. أولى مسابير ما بين الكواكب على غرار مارينر 4 كانت من هذا النوع. بالرغم من كل هذا تظل الأهداف التي يمكن تحقيقها من خلال مثل هذه البعثات محدودة: وقت المراقبة هو قصير جدا نظرا للسرعة الكبيرة التي يحلق بها والتي تبلغ عدة كيلوميترات في الثانية، وغالبا ما يظهر وجه واحد فقط من الأجرام السماوية مرئيا في وقت التحليق بالإضافة إلى ظروف الإضاءة الغير مثالية لاتقاط الصور وجمع البيانات. طريقة من الملاحظة قد تكون الوحيدة التي يمكن استخدامها لأكثر الأجسام السماوية بعدا (مثل مسبار نيو هورايزونز الذي تم ارساله بهدف استكشاف كوكب بلوتو وأقماره). تستخدم هذه النوعية من المسابير أيضا في بعثات الاستطلاع المتطورة التي تهدف إلى إجراء سلسلة من الدراسات على عدة كواكب أو أقمار (مسابير فوياجر على سبيل المثال). كما أنها قد تكون هي السبيل الوحيد لدراسة الأجسام الصغيرة مثل المذنبات والكويكبات (كمهمة ستاردوست).

 

مسبار نيو هورايزونز.

المسبار المداري

 

مسبار غاليليو   .

 

 مسبار كاسيني هويجنز. 

المسبار المداري هو مسبار فضاء يقوم بعد وصوله إلى هدفه (جسم سماوي) بالدوران في مدار حوله بغرض دراسته. تعتبر هذه المسابير ثاني أكبر فئة بعد فئة المسابير التي تقومون بالتحليق. لكي يتمكن مسبار الفضاء من دخول المدار، يجب عليه أن يقلل إلى حد كبير من سرعته عندما يصل إلى هدفه. يمكن أن تمثل الدفعات المستخدمة لعملية الكبح هذه جزءا كبيرا من الكتلة الكلية للآلة (عادة حوالي 50% بالنسبة لتلك المرسلة إلى المريخ). يسمح المسبار المداري باجراء ملاحظات منتظمة على السطح الكامل تقريبا الأجرام السماوية لعدة سنوات. منطقيا، إرسال المسبار المداري إلى هدف معين هي الخطوة التي تلي مباشرة إرسال مسبار التحليق البسيط. يتم اختيار مدار مسبار الفضاء وفقا للأهداف المتوخاة ولكن أيضا استنادا للقيود التي تمثلها كتلته. تختار البعثات التي لديها ميزانية مقيدة على غرار بعثة مارس إكسبريس مدارا بيضاوي الشكل أقل كفاءة ولكن أقل تكلفة في الوقود من المدار الدائري المنخفض الذي يحتفظ به بالنسبة لمعظم مدارات المريخ التابعة لوكالة ناسا.

  مسبار الغلاف الجوي   

 

مسبار الغلاف الجوي غاليليو.

مسبار الغلاف الجوي هو مسبار فضاء يعبر الغلاف الجوي لكوكب معين بغرض دراسته. مهمة هذا المسبار هي قصيرة نسبيا، تستمر عموما طوال المدة تستغرقها عملية نزول المسبار على السطح. يحتاج المسبار خلال هذه المرحلة فقط إلى كمية محدودة من الطاقة يجري سحبها من البطاريات. ينقل مسبار الغلاف الجوي عادة إلى الكوكب المراد استكشاف غلافه الجوي بواسطة سفينة أم تكون على اتصال به. تمت دراسة كوكب الزهرة على وجه الخصوص من خلال هذه الطريقة باستعمال سلسلة من المسابير السوفياتية لبرنامج فينيرا. من بين مسابير الغلاف الجوي البارزة الأخرى نجد كلا من مسبار هويجنز الذين درس الغلاف الجوي لقمر تيتان (أكبر أقمار زحل)، بالإضافة إلى مسبار الغلاف الجوي غاليليو الذي استطاع الدخول حوالي 200 كيلومتر عبر الطبقات العليا للغلاف الجوي للكوكب الغازي العملاق المشتري. سمح الغلاف الجوي السميك للغاية لكوكب الزهرة بتنفيذ بالونات برنامج فيغا السوفياتي التي يمكنها نقل البيانات لعدة عشرات من ساعات.

مسبار الإنزال

 

واحد من مسابير الإنزال لبرنامج سيرفيور التي هبطت على سطح القمر.

مسبار الإنزال هو نوع من المركبات الفضائية المصممة للبقاء على «قيد الحياة» بعد هبوطها على سطح كوكب أو قمر ومن ثم جمع البيانات العلمية عنه من على سطحه ونقلها إلى مقر القيادة على الأرض بشكل مباشر أو غير مباشر (عن طريق مركبة فضائية أخرى في المدار). في هذا السياق تم استكشاف كل من القمر وكوكب المريخ بشكل خاص باستخدام هذا النوع من المسابير، على سبيل المثال مسابير برنامج سيرفيور التي هبطت على سطح القمر والمسابير الإثنين لبرنامج فايكينغ بالإضافة إلى مسبار فينيكس التي انزلت كلها على سطح المريخ. في كل الحالات تظل مسألة «الهبوط السلس» هي النقطة الرئيسية التي تواجه المصممين عندما يتعلق الأمر بهذا النوع من المسابير. استخدام المظلة التي تفتح أثناء انزال المسبار على سبيل المثال من قبل هويجنز على قمر تيتان قد يكون حلا لهذه الإشكلية، لكن طريقة الإنزال هذه تتطلب وجود غلاف جوي سميك بما فيه الكفاية، وبالتالي فهي ليست مناسبة للمريخ. بالرغم من أن أسلوب الإنزال باستعمال المظلة يقلل من كتلة المسبار ويتميز بتكلفته، إلا أنه وبمقارنته مع أساليب أخرى لا يسمح هذه الإنزال بهبوط المسبار بطريقة مسيطر عليها تماما. لإنزال مسبار الفضاء على سطح الأجرام السماوية التي تفتقر للغلاف الجوي يجب استخدام محركات صاروخية بغرض التقليل التدريجي لسرعة المركبة الفضائية. تتجلى سلبيات طريقة الإنزال باستعمال محركات صاروخية كابحة في حاجتها إلى نقل كميات كبيرة من الوقود الشئ الذي يزيد من الكتلة الكلية للمسبار. بالنسبة للمريخ، ولتفادي مشكلة الوزن الزائد قامت وكالة ناسا بتطوير تقنيات هبوط خاصة بديلة: طريقة الإنزال باستعمال الوسائد الهوائية على سبيل المثال، التي جرى تنفيدها للمرة الأولى أثناء مهمة مارس باثفايندر لاستكشاف سطح المريخ. كما تم تنفيد نظام الإنزال المتطور للغاية هذا أيضا بحلول سنة 2012 على مسبار مختبر علوم المريخ.

المسبار المتجول أو الروفر

الروفر القمري السوفياتي لونوخود.

 

مسبار كيوريوسيتي روفر على الأرض قبل الإطلاق.

الروفر هو مسبار فضاء مصمم للتحرك فوق سطح الكواكب أو الأجسام الفضائية بغرض القيام بدراسات على الكوكب في الموقع في نقاط مختلفة ذات أهمية علمية. يمكن لهذه المسابير المتجولة حمل مختبرات صغيرة متكامل لتحليل العينات التي تم جمعها تماما كما كان الحال مع مختبر علوم المريخ الذي اصطحب معه مسبار كيوريوسيتي روفر المتجول. يحصل هذا النوع من المسابير على طاقته انطلاقا من الألواح الشمسية أو من مولد الكهرباء من الحرارة الناجمة عن الاضمحلال المشع. إذا كانت المسافة بين الروفر ومركز القيادة ليست بالمهمة جدا (القمر على سبيل المثال) يمكن في هذه الحالة التحكم في المسبار عن بعد. في حين إذا كانت هذه المسافة مهمة جدا بالنسبة لمتجولات المريخ، يكون لهذه الأخيرة استقلالية معينة في عملة تنقلهم على سطح المريخ تعتمد أساسا على برامج تحليل الأرض. لكن حركته تظل دائما بطيئة نسبيا الحركات لاتتعدي في جميع الأحوال بضع مئات الأقدام في اليوم الواحد.

بعثة العودة بالعينات إلى الأرض 

نموذج للمسبار القمري السوفيتي لونا 16، أول مسبار يحط على سطح القمر ويتمكن من العودة إلى الأرض جالبا معه عينات من تربة القمر.

في هذه الحالة يكون الهدف من المهمة هو جلب عينات تم جمعها من جسم سماوي آخر (كوكب، مذنب أو كويكب) أو جسيمات بين الكواكب أو بين النجوم إلى الأرض لتحليلها. بالمقارنة مع دراسة ميدانية بواسطة أدوات روبوت مثل الروفر المريخي كيوريوسيتي، تسمح العودة بعينات التربة إلى الأرض بتحليل أكثر دقة، كما تسمح أيضا بمناولة العينات وتعديل الظروف التجريبية بالموازاة مع تقدم التكنولوجيا والمعرفة. لكن في الوقت نفسه قد ينطوي هذا النوع من المهام على صعوبات كبيرة، لعل أبرزها هو قيام المسبار بإنزال تلقائي علي جسم سماوي تنعدم فيه تقريبا الجاذبية أو على العكس من ذلك ان يكون قادرا علي الهبوط والانطلاق من على سطح جسم ذي جاذبية معتبرة، كما يجب على مسابير هذه النوعية من المهام في كل الأحوال أن تكون لها القدرة على إعادة الدخول إلى الغلاف الجوي للأرض بسرعة عالية وبدقة كبيرة. مهمة العودة بالعينات المريخية إلى الأرض، التي شكلت في سنة 2016 أهم أهداف دراسة المجموعة الشمسية، لم تتحقق بعد نظرا لأسباب مالية وتكنولوجية على سواء.

المخترق

 

مخترق الفضاء العميق 2.  

   


المخترق أو المتغلغل (بالفرنسية: Pénétrateur)‏ هو عبارة عن مركبة فضائية صغيرة مصممة لاختراق أرض جسم سماوي (كوكب، قمر، كويكب أو مذنب) بسرعة عالية خاضعة لتباطؤ من عدة مئات من جي. تنتقل المعلومات التي تجمعها الأجهزة العلمية على متن المركبة بواسطة مرسل صغير إلى السفينة المدارية الأم، التي ترسلها بدورها إلى محطات على الأرض. يمكن مبدأ عمل المخترق من تجنب حمل المظلات والصواريخ اللازمة للهبوط السلس، وبالتالي يخفف إلى حد كبير من وزن الإنزال. لكنه في الآن ذاته يجب أن يكون قادرا على تحمل الأثر الذي يخلق بدوره العديد من القيود على كتلته، وهيكله وتصميم حمولته. لم تتجاوز العديد من مشاريع المسبار المخترق مرحلة الدراسة، وبحلول سنة 2013، تم تنفيد بعثتين فقط من للمسابير المخترقة لكن دون نتائج بسبب فقدان المركبة الأم.

أقمار الاتصالاتأقمار الإتصالات هي مركبات مسؤول عن نقل الاتصالات بين سطح جسم سماوي (من مكان تواجد مسبار الإنزال أو روفر) والأرض. تمتلك هذه المركبات دائما وإلى غاية اللحظة مدارات لها أهدافها العلمية الخاصة على غرار مارس أوديسي أو مارس ريكونيسانس أوربيتر. يمكن أن تندرج بعض مسابير الفضاء أحيانا ضمن عدة فئات مثل مسابير.فايكنج التي تجمع في نفس الوقت بين مسبار الإنزال والمسبار المداري.

العارض التكنولوجي

العارض التكنولوجي هو مركبة فضائية يتمثل هدفها الرئيسي في التحقق من صحة تقنية جديدة. على سبيل المثال مسبار الفضاء العميق 1 الذي كان الهدف الرئيسي منه هو التحقق من صحة إمكانية استخدام الدفع الأيوني لبعثات بين.الكواكب.

أبرز المسابير ومهامها

اقتصرت المهام الأولى لمسابير الفضاء على مهمات بسيطة إلى أهداف أقرب نوعا ما للكرة الأرضية تضمنت رحلال في اتجاه واحد لدراسة القمر والزهرة على سبيل المثال. لكنها سرعان ما تطورت إلى مهام معقدة، شملت رحلات في اتجاهين بغرض دراسة أجسام سماوية بعيد نسبيا عن الأرض والهبوط عليها والعودة ببيانات وعينات منها إلى الأرض.

انبثقت أولى مهام استكشاف الفضاء باستخدام مسابير فضاء غير مأهولة عن ما يعرف تاريخيا باسم سباق غزو الفضاء بين الاتحاد السوفيتي من جهة والولايات المتحدة الأمريكية مجهة أخرى. في كل الحالات تمكن الأمريكيون من إحراز تقدم فيما يخص إرسال بشر إلى الفضاء، أين لامست أقدامهم سطح القمر أولا قبل السوفييت. في حين تمكن السوفييت من الوصول الأول بمسابير الفضاء التابعة لهم إلى الأجرام السماوية، فكانو أول من تمكن من إنزال مركباتهم على عدد من الكواكب على غرار القمر والمريخ والزهرة.

مسابير القمر

بدأت عمليت اكتشاف الفضاء بالتوازي مع صراع الحرب الباردة بين السوفييت والأمريكيين، لينتقل صراع التفوق من الأرض إلى الفضاء الخرجي، فكان القمر هو البداية. حيث شهدهت هذه الفترة إطلاق جملة من المسابير القمرية، لعل أبرزها: لونا 1، هو مسبار فضاء يندرج ضمن برنامج لونا السوفييتي. يعرف هذا المسبار تاريخيا كأول مسبار يقترب من القمر، بعد أن كان من المبرمج هبوطه على القمر أدت إحدى الأعطال إلى تجاوز القمر على مسافة لا تتعدى 6000 كم، ليتخذ له مدارا حول الشمس.

بيونير 4، الذي يعرف في التاريخ كأول مسبار أمريكي يتحرر من جاذبية الأرض. أطلق بعد شهرين تقريبا من إطلاق السوفييت لمسبار لونا 1، حيث تمكن من إحراز إنجاز مماثل لهذا الأخير.

لونا 2، أول مسبار يصطدم بالقمر؛ وهو بذلك أول آلة من صنع بشري تتمكن من الوصول إلى القمر.

لونا 9، أول مسبار فضاء يتمكن من الهبوط سالما على سطح القمر.

لونا 16، أول مسبار فضاء يحط على سطح القمر ويعود إلى الأرض بعينات من تربة القمر بعد خمس محاولات فاشلة.

لونوخود 1، أول مسبار روفر ذاتي الحركة يهبط على سطح القمر.

مسابير عطارد

مارينر 10، هو مسبار فضائي تم إطلاقه من طرف وكالة ناسا بهدف إجراء قياسات حول بيئة وسطح كوكب عطارد وغلافه الجوي.

مسنجر، هو مسبار فضاء تابع لوكالة ناسا، تم إطلاقه بغرض القيام بعدة دراسات على عطارد (أقرب كواكب المجموعة الشمسية إلى الشمس) تشمل دراسة مكونات غلافه الجوي وتكوين تضاريسه وكذا القيام بقياس مجاله المغناطيسي. يعتبر مسنجر أول بعثة لمسبار يتم ارساله للدوران حول عطارد والقيام بقياسات علمية وإرسالها إلى الأرض.

مسابير الزهرةمارينر 2

فينيرا 4، وهو مسبار فضاء روسي يندرج ضمن مشروع فينيرا لاكتشاف كوكب الزهرة. يعرف هذا المسبار على أنه أول مسبار يهبط بنجاح على كوكب آخر.

فينيرا 7، هو مسبار سوفيتي أصبح بعد هبوطه على سطح الزهرة أول مركبة فضائية تتمكن من الهبوط بنجاح على كوكب آخر وترسل بيانات استكشافية منه إلى الأرض.

فينيرا 9

ماجلان

مسابير المريخمارينر 9 هو مسبار فضاء أرسلته ناسا بهدف استكشاف المريخ في إطار برنامج مارينر. أصبح بعد وصول إلى مدار المريخ أول قمر صناعي يتخذ مدارا حول أحد الكواكب.

مارس 3، هو مسبار فضاء يعتبر كأول مسبار يقوم الإنسان بإرساله للنزول على كوكب المريخ. لكن ولسبب غير معروف بعد 14.5 ثانية وصوله توقف إرسال المسبار.

سوجورنر هو مسبار روفر مريخي هبط بحلول 4 يوليو 1997 على سطح المريخ بمنطقة أريس فاليس. يعتبر كأول مسبار روفر ناجح على المريخ، قام باسكشاف المريخ لمدة ثلاثة أشهر بواسطة كامراته الأمامية والخلفية وأجهزة إجراء التجارب العلمية.

فايكينغ 1

فايكينغ 2

مارس باثفايندر

سبيريت وأبورتيونيتي

مارس ريكونيسانس أوربيتر

فينيكس

مختبر علوم المريخ (كيوريوستي)

مافن

إكسو مارس

مسابير المشتري وزحلبيونير 10 وبيونير 11

فوياجر 1، مسبار فضاء تابع لبرنامج فوياجر، زار في مرحلة معينة كوكبي المشتري وزحل، فكان أول مسبار يقدم صورة شاملة عن هذين الكوكبين الضخمين وأقمارهما. ليصبح فيما بعد كأول مركبة من صنع البشر تغادر المجموعة الشمسية، حيث تم تمديد مهمته لتشمل دراسة حدود المجموعة الشمسية وحزام كايبر.

فوياجر 2

غاليليو، هو مسبار فضاء تابع لوكالة ناسا، يهدف لدراسة كوكب المشتري وأقماره. استطاع هذا المسبار التغلغل داخل الغلاف الجوي للمشتري إلي عمق يبلغ حوالي 200 كيلومترا، حيث تمكن قبل أن يدمر من إرسال كم هائل من المعلومات والبيانات حول النشاط الجوي لهذا الكوكب.

كاسيني-هويجنز

جونو، هو أول مسبار فضاء لاستكشاف المشتري بدون بطارية ذرية تابع لوكالة ناسا، قامت هذه الأخيرة بارساله بحلول 5 أغسطس من سنة 2011 إلى مدار قطبي حول المشتري بغرض دراسة تركيب الكوكب وحقل جاذبيته وحقله وغلافه المغناطيسي بالإضافة إلى تسجيل بيانات تفسر تكوين الكوكب ورياحه القوية ونسبة المياه الموجودة بداخل غلافه الجوي.

مسابير أورانوس ونبتونفوياجر 2، هو ثاني مسبار تابع لبرنامج فوياجر بعد فوياجر 1، تمثلت المهمة الأساسية لهذا المسبار في زيارة عمالقة الجليد أورانوس ونبتون، والتي أنجزت بحلول 2 أكتوبر 1989. يعتبر فوياجر 2 حاليا المسبار الوحيد الذي زار عمالقة الجليد، وهو أيضا رابع مركبة فضائية من أصل خمس تركت النظام الشمسي.

مسابير بلوتو

نيو هورايزونز، هو أول مسبار فضاء سيمكن بواسطته دراسة كوكب بلوتو وأقماره، بالإضافة إلى دراسة حزام كايبر المكون من اجسام متجمدة وصخور تحيط بالمجموعة الشمسية.

===

مقراب سبيتزر الفضائي

من ويكيبيديا، الموسوعة الحرة

اذهب إلى التنقل اذهب إلى البحث

مقراب سبيتزر الفضائي

 

المشغل معهد كاليفورنيا للتقنية

، ومختبر الدفع النفاث

 

سمي باسم ليمان سبيتزر

المصنع مركز غودارد لرحلات الفضاء

 

تاريخ الإطلاق 25 أغسطس 2003

 

المكوك الحامل دلتا 2

 

الموقع الإلكتروني الموقع الرسمي

نصف المحور الرئيسي 1.0143 وحدة فلكية

 

الشذوذ 0.011323

 

الميلان 1.1338 درجة

 

الأوج 1.0258 وحدة فلكية

 

الحضيض 1.0028 وحدة فلكية

 

مرصد تشاندرا الفضائي للأشعة السينية

 

تعديل مصدري - تعديل

مقراب سبيتزر الفضائي هو مرصد فضائي يلتقط الأشعة تحت الحمراء، والرابع والأخير من بين المراصد العظمى التي أطلقتها ناسا إلى الفضاء. تم إطلاقه في 25 أغسطس 2003 من مركز كينيدي للفضاء في قاعدة كاب كانافيرال للقوات الجوية.

اطلقت الوكالة على المقراب اسم «سبيتزر» تكريما لذكرى ليمان سبيتزر، أحد علماء الفلك المشهورين، عالم الفلك في جامعة برنستون الذي اقترح في العام 1946 تطوير أول صاروخ مداري يطلق تلسكوبات إلى الفضاء فوق الغيوم الحاجبة لطبقات الجو العليا وقد كان سبيتزر أحد رواد الجهود الهادفة إلى اقناع الكونغرس بتخصيص أموال لإطلاق أسطول من التلسكوبات المدارية. كلف المشروع 670 مليون دولار.

ومن المسبارات التي أطلقتها ناسا من قبل وتقوم بقياس أشعة غير مرئية من الفضاء تلسكوب شاندرا الفضائي للأشعة السينية. وكل من تلك المسبارات التي تقيس الضوء غير المرئي تفصح عن خواص وظواهر للأجرام السماوية وما يحيط بها من غبار كوني لا يمكن للتلسكوبات العادية رؤيتها. فبعضها مثل تلسكوب سبيتز يقيس الاشعة تحت الحمراء وهي تتميز بأن الغبار الكوني لا يمتصها وبذلك تصل إلينا ويمكننا بذلك رؤية النجوم المختفية وراء الغبار الكوني.

توقف التلسكوب سبيتزر عن العمل في 30 يناير 2020.

محتويات 1 مهام التلسكوب سبيتزر

2 اكتشافات

3 وصلات خارجية

4 مراجع

5 اقرأ أيضا

مهام التلسكوب سبيتزريستطيع المقراب أن يسجل موجات أشعة تحت الحمراء، أو مصادر حرارية ضعيفة جدا مما يتيح لعلماء الفلك لأول مرة أن يلقوا نظرة على قلب الحقول النجمية التي تحجبها الغاز والغبار الكوني الكثيفة عن تلسكوبات التي تقيس الضوء المرئي العادية. يراقب سبيتزر الكون من مدار قريب من كوكب الأرض. والمركز العلمي المسؤول عن هذا التلسكوب وعن ربط المراكز العلمية حول العالم بالبيانات التي يتم الحصول عليها من سبيتزر، هو مركز تحليل ومعالجة البيانات تحت الحمراء IPAC في جامعة «كالتك» في كاليفورنيا التابع لناسا ويترأس إدارته عالم عربي من لبنان وهو الدكتور جورج حلو.

كانت التقديرات الأولى تشير إلى ان التلسكوب سيتوقف عن العمل في العام 2008 حيث يجري تبريده بغاز الهيليوم، لكن بسبب الاقتصاد في استخدام التلسكوب فمن المتوقع أن يظل في الخدمة حتى ربيع سنة 2009 وهي السنة العالمية لعلم الفلك.

اكتشافات

كشف المقراب عن وجود كميات هائلة من بخار الماء في منطقة تعج بنجوم حديثة الولادة، على بعد حوالي 1000 سنة ضوئية من الأرض. وقدر العلماء كمية بخار الماء الموجودة في قرص الغبار والغاز المحيط بهذه النجوم بخمسة أضعاف الماء الموجود على كوكب الأرض.

من أوائل الصور التي بعث بها تلسكوب سبيتزر صورة مجرة كانت تبدو مغبشة للتلسكوبات الأخرى. وفي صور سبيتزر يمكن رؤية حقول واسعة من النجوم في قلادة لولبية تطوق المجرة. كما قام بتصوير غبارا متوهجا اتضح من دراسته أنه من غبار الكربون. التلسكوب الجديد يظهر ان رقعة سماوية تبدو سوداء وفارغة بالتلسكوبات المخصصة لمراقبة الضوء المرئي، هي «مشتل نجوم»، أو سحابة غبار هائلة تتشكل في داخلها نجوم وأجسام فلكية أخرى.

 

بعض صور سبيتزر ،( الألوان اختيارية لتوضيح المكونات).

وصلات خارجيةالموقع الرسمي لسبيتزر

======

مقراب هابل الفضائي

من ويكيبيديا، الموسوعة الحرة

(بالتحويل من مرصد هابل الفضائي)

اذهب إلى التنقل اذهب إلى البحث

مَرصَدُ هَابل الفَضَائي

مرصد هابل الفضائي لحظة مُغادرته مكُوك الفضاء أتلانتيس في بعثته STS-125 وهي بعثة هابل الخامسة والأخيرة.

طبيعة المهمة مرصد فضائي

المشغل ناسا (NASA)

وكالة الفضاء الأوروبية (ESA)

معهد مراصد علوم الفضاء (STScI)

رمز التعريف الفلكي 1990-037B

رقم دليل القمر الصناعي 20580

الموقع الإلكتروني nasa.gov/hubble

hubblesite.org

spacetelescope.org

مدة المهمة 32 سنةً و4 أشهرٍ و19 يومًا قد انقضت

خصائص المركبات الفضائية

المصنع بيركن إلمر (البَصَريَّات)

لوكهيد (المركبَة الفَضَائيَّة)

وزن الإطلاق 11,110 كـغ (24,490 رطل)

الأبعاد 13.2 م × 4.2 م (43 قدم × 14 قدم)

الطاقة 2800 واط

الطاقم ؟؟؟

بداية المهمة

تاريخ الإطلاق 24 أبريل 1990 12:33:51 UTC

الصاروخ مكوك الفضاء ديسكفري (إس تي إس-31)

موقع الإطلاق مركز كينيدي للفضاء، 39B

دخول الخدمة 20 مايو 1990

نهاية المهمة

تاريخ الانحلال قُدِّر عمر المرصد 2030-2040

المتغيرات المدارية

النظام المرجعي مدار أرضي

النظام المداري مدار أرضي منخفض

نصف المحور الرئيسي 6,924 كـم (4,302 ميل)

نقطة الحضيض 551.4 كـم (342.6 ميل)

نقطة الأوج 555.6 كـم (345.2 ميل)

ميل المدار 28.5 درجة

الدور المداري 95.6 دقيقة

مدة الدورة 95.48 دقيقة

الحقبة الفلكية 27 يناير 2015، 09:27:58 توقيت عالمي منسق

المرصد الرئيسي

النوع مقراب ريتشي كريتيان العاكس

القُطر 2.4 م (7.9 قدم)

البُعد البؤري 57.6 م (189 قدم)

منطقة التجميع 4.5 م² (48 قدم مربع)

الموجات قريبة من أشعة التحت حمراء، ضوء مرئي، أشعة فوق البنفسجية

الأجهزة العلمية

NICMOS المقيَاس الطَّيفي للأجسام المُضاعفة وكاميرا الأشَعَّة القَريبَة من التَّحت حَمراء

ACS الكاميرا الاستقصائيَّة المُتقدمة

WFC3 الكاميرا وَاسعَة المجال 3

COS المحلِّل الطَّيفي للأُصولِ الكَونيَّة

STIS المحلِّل الطَّيفي لصور المقراب الفضائي

FGS حسَّاس التَّوجيه الدَّقيق

 

مرصد كومبتون لأشعة غاما، وتلسكوب جيمس ويب الفضائي

تعديل مصدري - تعديل

مِقْرَابُ هَابل الفَضَائي أو مَرصَدُ هَابل الفَضَائي أو تِلسكوب هابل الفضائي (بالإنجليزية: Hubble Space Telescope ويُدعى اختصاراً HST)‏ هو مرصدٌ فضائي يدُورُ حول الأرض، وقد أمدَّ الفلكيين بأوضح وأفضل رُؤية للكون على الإطلاق بعد طُول مُعاناتهم من المقاريب الأرضيَّة التي تقفُ في طريق وضوح رُؤيتها الكثير من العوائق سواء جوُّ الأرض المليء بالأتربة والغُبار أم المُؤثرات البصريَّة الخادعة لجوِّ الأرض والتي تُؤثِّر في دقَّة النتائج. سُمِّي المقراب على اسم العالم الفلكي إدوين هابل. بدأ مشرُوع بناء المقراب عام 1977 وأُطلق إلى مداره الأرضي المُنخفض خارج الغلاف الجوَّي على بُعد 593 كم فوق مستوى سطح البحر، حيثُ يُكمل مداره الدَّائري بين 96-97 دقيقة ويحلِّقُ بسرعة 28 ألف كيلومتر/ساعة.

أُرسل بواسطة مكُوك فضائي استُخدم لإطلاقه وهو مكوك ديسكفري في المهمة STS-31 في 24 أبريل عام 1990، ولا يزالُ هذا المقراب قيد التَّشغيل حتَّى الآن، هذا المرصدُ ذو بؤرة (فتحة عدسة) قدرها 2.4 م (7.9 قدم). لمرصد هابل أربعة أجهزة رئيسيَّة للرَّصد حيثُ تُصوِّرُ بالأشعة فوق البنفسجية القريبة والطَّيف المرئي والأشعَّة تَّحت الحمراء القريبة.

يقعُ مدار هذا المرصد خارج نطاق تشتيت غلاف الأرض الجوِّي للضَّوء القادم من الأجرام الكونيَّة ممّا يسمحُ بالتقاط صور عالية الوُضُوح بدون ضوء في الخلفية تقريبًا. فعلى سبيل المثال صُورة حقلُ هابل العميق هي أكثر صُورة طيف مرئي مُفصَّلة أُخذت لأَجسام الكون الأكثر بُعدًا. لقد أدَّت العديد من مُشاهدات مرصد هابل إلى تقدُّم مُفاجئ في الفيزياء الفلكيَّة مثل قانُون التَّحديد الدَّقيق لنسبة توسع الكون.

يُعد مرصدُ هابل الفضائي أحد أكبر وأَكثر المراصد الفضائيَّة تنوعًا مع عدم كونه الأول بينهم، ومعرُوف جيدًا بكونه أَداة بحث حيويَّة في علم الفلك شيَّدتهُ ناسا مع مُساهمات وكالة الفضاء الأُورُوبيَّة وقام بتشغيله معهد مراصد عُلُوم الفضاء، كما يُعدُّ واحدًا من مراصد ناسا العظيمة جنبًا إلى جنب مع مرصد كُومبتون لأشعَّة غاما ومرصد شاندرا الفضائي للأشعَّة السِّينيَّة ومقرابُ سبيتزر الفضائي.

اقتُرحت مراصد الفضاء في بداية عام 1923 وتمَّ تمويل مرصدُ هابل في سبعينيَّات القرن العشرين واقترح إطلاقه عام 1983؛ ولكن المشروع عانى من تأخيراتٍ تقنيَّة ومن مشاكل في الميزانيَّة بالإضافة إلى حدوث كارثة مكُوك الفضاء تشالنجر. حينما أُطلق مرصد هابل في عام 1990 لُوحظ بأنَّ المرآة الرَّئيسيَّة وُضعت بشكلٍ غير صحيح وهذا أثَّر على قُدُراتِ المرصد وقد أُعِيد ضبط المرصد الفضائي إلى مُستوى الجودة المطلُوب منه بعد إطلاق مهمَّة الإصلاح STS-61 لصيانة المرصد عام 1993.

هابل هو المرصد الوحيد المُصمَّمُ لتتمَّ صيانته في الفضاء من قبلِ رُوَّاد الفضاء. بين الأعوام 1993 و2002 أُطلقت أربعُ مهام لإصلاح وتطوير واستبدال أنظمة المرصد وأُلغيت المهمَّة الخامسة لأسباب السَّلامة بعد كارثة مكُوك الفضاء كُولومبيا. بكلِّ الأحوال وافق مدير ناسا مايكل غريفين بعد مُناقشاتٍ على مهمَّة صيانةٍ أخيرة انتهت عام 2009؛ ولا يزالُ المرصد قيد التَّشغيل حتَّى عام 2019، ويُتوقَّعُ استمراره في العمل حتَّى عام 2030-2040. الخَلَف العلمي لمرصد هابل هو مقرابُ جيمس ويب الفضائي والذي من المُقرَّرِ إطلاقه في مارس من عام 2021.وفي يوم الجمعة 17 يونيو 2021، كشفت وكالة ناسا تعرض التلسكوب إلى عطل مما أدى إلى توقفه بعد وجودة في الفضاء منذ 30 عاماً، وأعلنت أن سبب عطل التلسكوب هو توقف الحاسوب الذي يتحكم بأجهزته عن العمل وفشل اختبار إعادة تشغيله في اليوم التالي، ورجحت أن تكون المشكلة في وحدة ذاكرة تالفة.

محتويات 1 البداية والتصميم والهدف 1.1 بوادر المُقترحات

1.2 السعي للحصول على التمويل

1.3 البناء والهندسة

1.4 المجمع المقرابي البصري

1.5 نُظم المركبة الفضائية

1.6 الأجهزة الأولية

1.7 الدعم الأرضي

1.8 كارثة تشالنجر والتَّأخير والإطلاق

2 العيب في المرآة 2.1 أصل المشكلة

2.2 الحل

3 البعثات والأجهزة الجديدة 3.1 بعثة الخدمة 1

3.2 بعثة الخدمة 2

3.3 بعثة الخدمة 3A

3.4 بعثة الخدمة 3B

3.5 بعثة الخدمة 4

4 المشاريع الكُبرى 4.1 المجمع الكوني لدراسة خارج المجرة العميق في مجال تحت الأحمر القريب

4.2 برنامج الحقول المحدودة

5 الاستخدام العام 5.1 رصد الهواة

5.2 الاحتفال بذكرى إطلاق المرصد

6 النتائج العلمية 6.1 المشاريع الرئيسية

6.2 الاكتشافات المهمة

6.3 التَّأثير على علم الفلك

6.4 هندسة الطيران والفضاء

7 بيانات هابل 7.1 نقل البيانات إلى الأرض

7.2 الصُّور الملوَّنة

7.3 الأرشيف

7.4 التقليل من نقل البيانات

7.5 تحليل البيانات

8 الأنشطة التوعية

9 المستقبل 9.1 تعطُّل المعدات

9.2 تدهور المدار

9.3 ما بعد هابل

10 قائمة بأجهزة مقراب هابل

11 صور من مقراب هابل

12 انظر أيضًا

13 ملاحظات

14 مصادر

15 مراجع

16 وصلات خارجية

البداية والتصميم والهدف

بوادر المُقترحاتفي عام 1923 قام هيرمان أوبرث - وهو من مُؤسِّسي علم الصَّواريخ مع روبرت غودارد وقسطنطين تسيولكوفسكي- بنشر مقالة بعنوان «Die Rakete zu den Planetenräumen» (صاروخ إلى فضاء الكواكب) ذكرا فيها أنَّهُ من المُمكن إطلاق مرصد إلى المدار الأرضي في الفضاء باستخدام الصَّاروخ.يعُودُ تاريخ مرصد هابل إلى عام 1946 حينما ذكر العالم الفلكي ليمان سبيتزر في بحثه "المزايا الفلكيَّة للمراصد الفضائيَّة".

وفيه نَاقشَ اثنتين من المزايا الرئيسيَّة للمرصد الفضائي والذي من شأنه أن يكُون أكثر أهميَّة من المراصد الأرضيَّة. أولًا: ستقتصر العوامل المؤثرة على الاستبانة الزَّاويّة (أصغر جُزء مُنفصل والتي يُمكنُها تمييز الأجسام بوُضُوح) فقط على حيُود الضَّوء، بدلًا من الاضطرابات التي تحدُث في الغلاف الجوي من حركة عنيفة أو غير مُستقرة من الهواء أو الماء أو بعض السَّوائل الأُخرى، والتي تتسبَّب في جعل رؤيتنا للنُّجُوم كأنَّها تتلألأ، وهذه الظاهرة يسمِّيها عُلماء الفلك بالرُّؤية الفلكيَّة. في ذلك الوقت كانت المراصد الأرضية تقتصر على معدل استبانة يتراوح بين 0.5–1.0 ثانية قوسيَّة مُقارنة باستبانة نظرية مرهونة بالحيُود مقدارها 0.05 ثانية قوسيَّة في مرصد فلكي ذي مرآة قُطرُها 2.5 متر. ثانيًا: أن المراصد الفضائية تستطيعُ رصد ضوء الأشعَّة تَّحت الحمراء والأشعَّة فوق البنفسجيَّة التي يمتصُّها الغلاف الجوِّي بقُوَّة.

لقد كرَّس سبيتزر جُزءًا كبيرًا من حياته المهنيَّة في الدفع إلى تطوير مرصد الفضاء. في عام 1962 أوصى تقرير من الأكاديميَّة الوطنيَّة للعُلُوم في الولايات المتَّحدة بتطوير المرصد الفلكي ليكون جُزءًا من رحلات الفضاء البشريَّة، وفي عام 1965 عُيِّن سبيتزر رئيسًا للَّجنة المُكلَّفة بمهمة تحديد الأهداف العلميَّة لمرصد الفضاء الكبير.بعد الحرب العالمية الثانية بدأ مشروع المرصد الفلكي الفضائي بالظُّهُور على نطاقٍ ضيِّقٍ جدًّا، فقد استعان العلماء بالتَّطورات التي حدثت في تكنُولوجيا الصَّواريخ أثناء الحرب، وكان أول حُصُول على طيف الأشعَّة فوق البنفسجيَّة للشَّمس في عام 1946. أطلقت ناسا في عام 1962 مرصد المدار الشَّمسي Orbiting Solar Observatory ـ (OSO) من أجل الحصول على الأشعة فوق البنفسجية والأشعَّة السينيَّة وأطيَاف أشعَّة غَامَا. في عام 1962 أطلقت المملكة المتحدة مرصد المدار الشَّمسي Ariel 1 الذي كان من ضمن برنامجها الفضائي أرييل، وفي عام 1966 أطلقَت ناسا أول بعثة للمرصد الفلكي المداري (OAO)، ولكن بعد إطلاقه بثلاثة أيَّام ضعُفت بطَّاريتُه وانتهت بذلك البعثة. بعد فشل تلك المهمَّة أُرسل مرصد آخر OAO-2 والتي رُصدت منهُ الأشعَّة الفوق بنفسجيَّة الآتية من الشَّمس والمجرَّات مُنذ إطلاقه في عام 1968 إلى 1972 مُتجاوزًا بذلك العُمر الذي توقَّعهُ العلماء للمرصد بأنَّه سيعمل فقط لمدةِ سنةٍ واحدة.أظهرت بعثات المرصدين OSO و OAO الدَّور الهام الذي يُمكن أن يلعبه الرصد الفضائي في علم الفلك، ففي عام 1968 طوَّرت ناسا خُطط مُحدَّدة لمقراب عاكس قُطر مرآته 3 أمتار، عُرف مؤقتاً باسم المرصد المداري الكبير أو مرصد الفضاء الكبير؛ وكان من المُقرر إطلاقه في عام 1979. وشدَّدت هذه الخُطط على الحاجة للبعثات المأهُولة من أجل صيانة المرصد الفضائي وذلك لضمان عمله وإطالة عُمره خاصًّة وأنَّهُ مشروعٌ مُكلف وباهظ الثَّمن، والتَّطوير للخطط التقنيَّة التي تسمح لإعادة استخدام مكُوك الفضَاء سرعان ما أصبحت مُتاحة.

السعي للحصول على التمويلشجَّع نجاح OAO الحصول على إجماع وتأييد مُتزايد وقَوي داخل المجتمع الفلكي بأنَّ مرصد الفضاء الفلكي ينبغي أن يكُون هدفًا رئيسيًّا. في عام 1970 أنشأت ناسا لجنتين؛ الأولى مهمتها تخطيط الجانب الهندسي لمشروع مرصد الفضاء والثانية مهمتها تحديد الأهداف العلمية للبعثة. حالما أُنشئت هذه اللجنتين كانت أمام ناسا العقبة التالية أمام مشروعها وهو التمويل، والذي من شأنه أن يكون أكثر تكلفة من أي مرصد أرضي. قام الكونغرس الأمريكي بوضع العديد من الأسئلة المتعلقة عن جوانب الميزانية المقترحة للمرصد، وأجبر ناسا على إجراء تخفيضات بالميزانية في مراحل التخطيط والذي كان حينها يتألف من دراسات مفصلة للغاية من الأدوات والأجهزة المحتمل وضعها وتركيبها في المرصد. في عام 1974 انخفض الانفاق العام في الولايات المتحدة مما استدعى الكونغرس بأن يوقف كل التمويل الموجه لمشروع المرصد الفضائي.ردًّا على ذلك الإلغاء بُذلت جهودٌ كبيرة في كافة أنحاء البلاد لتشكيل جبهة موحدة للضغط بالتنسيق بين علماء الفلك. فقام العديد منهم بمقابلة أعضاء الكونغرس ومجلس النواب الأمريكي بشكل مباشر، كما نظِّمت حملات كبيرة لكتابة رسائل إلى الكونغرس من أجل إعادة التمويل. نشرت الأكاديمية الوطنية للعلوم تقريرًا يتحدث فيه على تأكيد الحاجة للمرصد الفلكي الفضائي، وفي النهاية وافق مجلس الشيوخ على نصف الميزانية التي وافق عليها الكونغرس قبل إلغاء التمويل.تسبب قلة التمويل في انخفاض حجم المشروع، فتحول قُطر المرآة التي كانت ستُصنع من 3 أمتار إلى 2.4 متر من أجل تخفيض التكاليف. كما رُفض مُقترح لمرصد فضائي قطر مرآته 1.5 متر، والذي كان سيكون بمثابة اختبار للأنظمة التي سيتم استخدامها على القمر الصناعي الرئيسي بسبب الميزانية؛ وبسبب ذلك تعاونت ناسا مع وكالة الفضاء الأوروبية (ESA). وافقت ESA على توفير التمويل اللازم وتزويدهم بالأدوات الأولى للجيل الأول لهذا المرصد والتي ستوضع فيه، بالإضافة إلى مصدر الطاقة التي ستشغله وهي الألواح الشمسية وسوف تُرسل وكالة الفضاء الأوروبية موظفين من عندها ليعملوا مع طاقم ناسا على هذا المرصد في الولايات المتحدة مُقابل أن تضمن ناسا للفلكيين الأوروبيين لوقت لا يقل عن 15٪ في استخدام المرصد في الرصد، وهو وقتٌ أقل من الوقت المسموح لفلكيي ناسا الذين لديهم الوقت الأكبر. في عام 1978 وافق الكونغرس على وضع التمويل النهائي وهو 36 مليون دولار، وبدأ التصميم للمرصد الكبير بشكل جدي وتحدد موعد الإطلاق ليكون في عام 1983. في عام 1983 سُمِّي المرصد باسم العالم الفلكي الأمريكي إدوين هابل، الذي قدم واحدة من أعظم الاكتشافات العلمية في القرن 20 حينما اكتشف أن الفضاء الكوني يتمدد.

البناء والهندسةحالما تمَّت الموافقة على المشروع ووصل التمويل قُسِّم العمل عليه بين العديد من المؤسسات. فقد أُعطيت المسؤولية عن تصميم وتطوير وبناء المرصد وأنظمته مركز مارشال لبعثات الفضاء بينما أُعطي مركز غودارد لرحلات الفضاء تصميم الأجهزة العلمية وتطويرها وبنائها، كما أن لديه التحكم الكامل بمركز المراقبة الأرضية لهذا المشروع. كَلف مركز مارشال شركة البصريات بيركن إلمر لتصميم وبناء تركيب المرايا ومجسات التوجيه الحسَّاسة لمرصد الفضاء. أما شركة لوكهيد لبناء الطائرات فقد كُلفت ببناء ودمج المركبة الفضائية التي سوف تحمل المرصد الفضائي.

المجمع المقرابي البصري

 

صورة توضح طريقة انعكاس الضوء في مقراب كاسيغرين العاكس.

يتألف نظام المجمع المقرابي البصري (Optical Telescope Assembly) ـ (OTA) من مرآتين ودعمات وفتحات للأجهزة ويحتوي أيضًا على عاكس كاسيغرين وفيه تشكل المرآتان صورًا مركزة على أكبر حقل رؤية متاح لها. عاكس كاسيغرين من صُنع ريتشي كريتيان وهي شركة مُتخصصة في صُنع مقاريب المراصد. تكمن وظيفة مقراب كاسيغرين العاكس بأن يقوم الضوء بصدم المرآة الرئيسية ليرتد بعدها عن هذه المرآة الأولية ويواجه المرآة الثانوية. ومن ثم تقوم المرآة الثانوية بتركيز الضوء عبر ثقب موجود في مركز المرآة الأولية يؤدي إلى الأجهزة العلمية للمرصد. نُظم المرآة والبصريات للمقراب يُحددون الأداء النهائي وذلك لأنها مصُممة بمواصفات معينة وصارمة. عادة ما تحتوي المراصد البصرية على مرايا صُقلت بدقة وبإحكام إلى حوالي عُشر الطول الموجي للضوء المرئي، ولكن كان من المقرر أن يُستخدم المرصد الفضائي لرصد الضوء المرئي مروراً بالأشعة فوق البنفسجية (أطوال موجية أقصر)، وأن تكون مواصفاته محدودة الحيود (تعطي أعلى قيمة استبانة للصورة)، من أجل الاستفادة الكاملة من بيئة الفضاء الخارجي. لذلك فقد كانت المرآة في حاجة إلى صقل لتصل دقتها إلى 10 نانومتر أو 1/65 من الطول الموجي للضوء الأحمر. لم يُصمَّم المجمع المقرابي البَصَري ليعطي الأداء الأمثل للأشعة تحت الحمراء في نهاية طيف الموجات الطويلة، كمثالٍ على ذلك أُبقيت المرايا عند درجات حرارة مستقرة (حتى في حال كونها دافئة عند درجة حرارة 15 °م) عن طريق أجهزة التسخين، ممّا حدَّ من أداء مرصد هابل في مجال الأشعة تحت الحمراء.

 

صَقل المرآة الرَّئيسيَّة لمرصدِ هَابل في مَصنَعِ بيركن إلمر. 1 مارس 1979

 

فنيُّون وهُم يُعاينون مرآه هابل الرئيسيَّة، 1982.

 

المراحل النِّهَائيَّة لصَقلِ المرآة الرَّئيسيَّة. 1990

عزمت شركة بيركن إلمر في صنعها للمرآة على استخدام تقنية متطورة للغاية مسيّرة بواسطة الحاسوب لصقل المرآة إلى الشكل المطلوب من أجل المرقاب. ومع ذلك طالبت ناسا من بيركن إلمر أن تتعاقد مع كوداك لتصنع مرآة احتياطية باستخدام تقنيات تقليدية لصقل المرآة لاحتمالية وجود عيب فيها. (كذلك إضافًة إلى المرآة الاحتياطية قامت شركة كوداك مع شركة آيتك بالتقدم بعرض للعمل في صقل المرآة الأصلية. ومن شروط العرض إلزام الشركتين بأن تتحققا من عمل الأُخرى في الصقل، من أجل الوصول إلى النتيجة المرجوة للمرآة، وهو الأمر الذي كان من شبه المؤكد في حال حدوثه أن يكشف العيب في المرآة الذي سبب المشاكل لاحقاً). مرآة كوداك الاحتياطية هي الآن معروضة بشكل دائم في متحف الطيران والفضاء الوطني بالولايات المتحدة. ومرآة آيتك التي بُنيت هي الآن مُستخدمة في مقراب طوله 2.4 متر موجود في مرصد ماغدالينا ريدج.

 

صورة واضحة أثناء المراحل الأولى لبناء المجمع المقرابي البصري (OTA) ويظهر فيها موظفون وهم يقيسون دعامات المجمع المقرابي البصري والحاجز الثانوي لهابل.

 

المرآة الاحتياطية من صُنع كوداك ويمكن رؤية هيكل الدعم الداخلي بشكل واضح وتُسمى في هذه الحالة بمرآة قرص العسل لأنها غير مُغطاة بمرآة السطح العاكس.

بدأت شركة بيركن إلمر العمل على المرآة في عام 1979. وبدأت بأن أخذت زجاجًا تمدده فائق الصغر - يُحافظ عليه عند درجة حرارة الغرفة دوماً لتجنب الانحناء (حوالي 70 درجة فهرنهايت)- من مصنع شركة كورنينغ الأمريكيَّة للزجاج. لتأمين الحصول على أدنى وزن للمرآتين، فقد تألفتا من صفيحتين علوية وسفلية، كل منهما بسماكة بوصة واحدة، وتحصران فيما بينهما شبكة أقراص سداسية الشكل شبيهة بقرص العسل. حاكت شركة بيركن إلمر الجاذبية المصغَّرة عن طريق دعم المرآة من الخلف بـ 130 قضيب رفيع طبقت جهداً متفاوت القوة. وهذا قد ضمن بأن يكون شكل المرآة النهائي صحيحًا وبالمواصفات المطلوبة. استمر صقل المرآة إلى شهر مايو 1981. ظهرت تقارير في ذلك الوقت من ناسا بسبب مشاكل مع إدارة شركة بيركن إلمر بسبب قلة الميزانية، وهذا جعل عملية الصقل بأن تتأخر عن جدولها المحدد. وبسبب قلة المال أوقفت ناسا العمل على المرآة الاحتياطية وحددت موعد الإطلاق للمرصد ليكون في أكتوبر 1984. انتهى العمل على المرآة في عام 1981. بعد ذلك غُسلت المرآة بـ 2400 غالون (9100 لتر) من الماء النقي الحار (ماء منزوع الأيونات)، ومن ثم طُليت بطلاء عاكس من الألومنيوم سماكته 65 نانومتر، وأيضًا بطبقة حامية من فلوريد المغنسيوم سماكتها 25 نانومتر.استمرت الشكوك في عدم كفاءة شركة بيركن إلمر لمشروع بهذا الأهمية والحجم، كما أنَّ النقص في الميزانية وعدم التقيد بالجدول الزمني الذي حُدِّد لهذا المشروع قد تسبب في تأخير بناء بقية المجمع المقرابي البصري، وقد وُصف التأخير بأنه "غير مستقر ويتغير في كل يوم"، وبسبب ذلك قامت ناسا بتأجيل موعد الإطلاق إلى شهر أبريل 1985. استمر عدم التقيد بالجدول الزمني من عند شركة بيركن إلمر بمُعدل شهر واحد في كل ربع سنة، وفي أحيان أُخرى وصل التأخير لمدة يوم واحد عن كل يوم عمل، عندها أُجبرت ناسا على التأجيل مرةً أُخرى ليكون في شهر مارس 1986، في ذلك الوقت ارتفعت الميزانية عن قيمتها السابقة لتصل إلى 1.175 مليار دولار.

 

مقراب هابل وقد تمَّ تجميعه في مصنع لوكهيد، ويظهر في الصورة طوله وحجمه بالنسبة للإنسان. التُقطت الصورة في بداية عام 1985.

نُظم المركبة الفضائيةالتَّحدي الهندسي الآخر هو المركبة الفضائية التي ستحمل على متنها مرصد هابل وأجهزته الأخرى. إذ سيتعين عليها تجاوز عقبة المرور لعدة مرات من مناطق معرضة لأشعة الشمس المباشرة إلى الظلام الآتي من ظل الأرض؛ وهذه مشكلة كبيرة ستسبب تباينات كبيرة في درجة الحرارة، في حين ينبغي على المركبة أن تكون مستقرّة بما فيه الكفاية للسماح بتوجيه المقراب الفضائي بشكل دقيق. يحافظ غطاء العزل متعدد الطبقات على استقرار درجة الحرارة للمقراب، وهو أيضًا يحيط بهيكل الألومنيوم الذي يحتوي بداخله على المقراب والأجهزة العلمية الأخرى. بداخل الهيكل هناك وظيفة أساسية للبوليمر المدعم بألياف الكربون تجعل الأجزاء العاملة في المقراب موجهة بشكل متين وثابت. لأن تركيبات الغرافيت لها القدرة على جذب جزيئات الماء من البيئة المحيطة سواء عن طريق الامتصاص أو الادمصاص، فقد كانت هناك مُخاطرة بأن تمتص دعامات البناء بخار الماء بينما المقراب في غرفة شركة لوكهيد النظيفة، والذي سيطرح بسبب فراغ الفضاء، مما سيؤدي إلى تغطية أجهزة المقراب الفضائي بالجليد. للتقليل من هذه المخاطرة، أُجريت عملية شطف بغاز النيتروجين قبل إطلاق المقراب إلى الفضاء.في حين أن العمل على المرصد وأجهزته جري بشكل أو بآخر بسهولة أكثر من بناء المجمع المقرابي البصري، إلا أن شركة لوكهيد تأخرت رغم ذلك عن الجدول الزمني، ومع حلول عام 1985 كان العمل الذي أنجزته لوكهيد للمركبة الفضائية قد زاد من حجم الميزانية إلى 30٪ ومتأخرة بثلاثة أشهر. ظهر تقرير من مركز مارشال لبعثات الفضاء عن التأخير يُذكر فيه أن لوكهيد اعتمدت على إدارة ناسا في الإشراف على عملها بدلًا من اتباع طريقتها الخاصة في إدارة العمل الذي اعتادته بنفسها.

الأجهزة الأولية

طالع أيضًا: كاميرا كوكبية واسعة المجال ومحلل غودارد الطيفي عالي الدقة ومضواء عالي السرعة وكاميرا الأجسام الخافتة والمحلل الطيفي للأجسام الخافتة

 

رسم متفجر ومُفصَّل للقطع والأجهزة المتكونة منه مرصد هابل الفضائي

حينما أُطلِق مرصد هابل كان يحملُ معه خمسة أجهزة علميَّة متطورة: الكاميرا الكوكبية واسعة المجال (Wide Field and Planetary Camera ) ـ (WF/PC)

محلِّل غودارد الطيفي عالي الدقة (Goddard High Resolution Spectrograph) ـ (GHRS)

مضواء عالي السرعة (High Speed Photometer) ـ (HSP)

كاميرا الأجسام الخافتة (Faint Object Camera) ـ (FOC)

المحلِّل الطَّيفي للأجسام الخافتة (Faint Object Spectrograph) ـ (FOS)

كانت الكاميرا الكوكبية واسعة المجال تُعطي صُورًا عالية الدِّقة وهذه الكاميرا كانت مُعدَّة للرصد البصري، لقد بُنيت من قِبل مختبر الدفع النفاث التابع لناسا في الولايات المتحدة، تحتوي هذه الكاميرا على مجموعة مُرشحات ضوئية يبلغ عددها 48 مرشَّح ضوئي مهمتها هي عزل الخُطُوط الطَّيفية ذات الأهميَّة الفيزيائية الفلكية. تحتوي الأجهزة على ثمانية رقائق من أجهزة اقتران الشحنات مُقسَّمة بين كاميرتين كل واحدَة منهما لديها أربع رقائق من أجهزة اقتران الشحنات مُعَدل دقتها 0.64 ميغابكسل. تُوصف أجهزة اقتران الشحنات بأنَّها دارات إلكترونية مُؤلفة من عناصر تصوير حسَّاسة للضَّوء (البيكسلات) على خلايا صغيرة موجودة معا تشبه شبكة موجودة على باب ما يتم فيها تحويل الضَّوء المجمَّع من قِبل كل بكسل إلى رقم ومن ثم تُرسل الأرقام (كل 2560000 معًا) إلى الحواسيب الأرضيَّة التي تُحوِّلها إلى صُور. لقد غطَّت الكاميرا واسعة المجال (WFC) مجالاً زاوِّياً كبيرا، وقامت بإجراء عمليات مسح واسعة للكون بينما التقطت الكاميرا الكوكبية (PC) صُورًا ذات بعد بؤري أطول وتكبير أكبر من رقائق الكاميرا واسعة المجال.محلل غودارد الطيفي عالي الدقة صمَّمَه مركز غودارد لرحلات الفضاء ليعمل في مجال الأشعة فوق البنفسجيَّة، فهذا المحلِّل يستطيع تحقيق استبانة طيفية يصل مقدارها إلى 90,000. كما يمكن رصد الأشعَّة فوق البنفسجيَّة أيضاً بواسطة كاميرا الأجسام الخافتة والمحلِّل الطَّيفي للأجسام الخافتة المُطوَّران لهذا الشأن، واللذان لهُما القدرة على تحقيق أعلى قيمة استبانة للطَّيف من أيّ جهاز آخر من أجهزة مرصد هابل. فقد استخدمت هذه الأجهزة الثلاثة كاشف كهرضوئي يعتمد على عد الفوتونات بدلًا من أجهزة اقتران الشحنات. صمَّمت وكالة الفضاء الأوروبية جهاز كاميرا الأجسام الخافتة، أما المحلل الطيفي للأجسام الخافتة فقامت جامعة كاليفورنيا بسان دييغو بالتَّعاون مع شركة مارتن ماريتا ببنائه.الجهازُ الأخير هو المضواء عالي السرعة الذي قامت بتصميمه ومن ثم بنائه جامعة ويسكونسن-ماديسون. وظيفته هي العَمَل على التقَاط الطَّيف المرئي والأشعة فوق البنفسجية الآتية من النجوم المتغيرة وكذلك من الأجسام الفلكيَّة الأُخرى المُتفاوتة السُّطُوع، والتي من المُمكن أن تصل إلى 100.000 من القياسات لكل ثانية وبمُعدل قياس ضوء فلكي دقَّته 2٪ أو أفضل.يُستخدم نظام التَّوجيه في مرصد هابل الفضائي كجهاز علمي، فهو يحتوي على حسَّاسات التَّوجيه الدَّقيق (FGS)، عددُها ثلاثة ومُهمَّة كل واحدة منها توجيه المرصد من أجل الحفاظ على الدقَّة خلال الرصد؛ كما عملت هذه الحسَّاسات على إنجاز قياسات فلكيَّة دقيقة بين النُّجُوم والحركات النسبية لها، تصل الدقة فيها إلى حدود 0.0003 ثانية قوسيَّة.

الدعم الأرضي

 

وجود هابل في مَدَار أرض مُنخفض يعني أنَّ العَدِيد من الأهدَاف والأجسَام تكون مرئيَّة في أقل من نِصف الوقت المُنقَضِي للمَدَار بسبب حَجب الأرض لرُؤية الأهداف والأجسام الأُخرى في النصف الأول من كلِّ مَدَار.

 

مركز التَّحكم بمرصد هابل الفضائي في مركز غودارد لرحلات الفضاء، 1999

معهد مراصد علوم الفضاء (STScI) هو المسؤول عن العَمَليات العلميَّة للمرصد مثل نَقِل البيَانات التي رصدها إلى عُلماء الفلك، كما يقومُ العاملون في STScI باستخدام المقراب ومراقبة ومعايرة الأجهزة العلميَّة إلى جانِب تشغيل الأرشيف والعمل على التوعية العامة. بينما الذي يقومُ بتشغيله هو رابطة الجامعات لأبحاث علم الفلك في جامعة جونز هوبكينز بمدينة بالتيمور الأمريكية. هذه الجامعة هي واحدة من بين 39 جامعة أمريكية وسبع فروع لجامعات دُوليَّة تابعة لها والَّتي تُشكِّل جميعها مُجتمعة رابطة واحدة للقيام بأبحاث علم الفلك، وقد أُنشئت هذه الرابطة في عام 1981 بعد صراع طويل على السُّلطة بين ناسا والمنظَّمات العلميَّة الواسعة. لقد أرادت ناسا إبقاء العمل ضمن مُنظَّمتها بينما أراد العُلماء أن يكون في مؤسسة تعليميَّة.

في عام 1984 أُنشئ مرفق التنسيق الأوروبي لرصد الفضاء في غارشينغ باي مونشن بالقُرب من مدينة ميونخ، وكان الهدف منه هو تقديم دعم مُماثل لعُلماء الفلك الأوروبيين؛ وبقي هكذا إلى عام 2011 حينما نُقلت هذه الأنشطة إلى مركز علم الفلك الفضائي الأوروبي.

يقعُ على عاتق رابطة الجامعات للأبحاث في علم الفلك مهمة مُعقَّدة وهي جدولة رصد مرصد الفضاء. إذ يكونُ ارتفاع مَدَار هابل في الغِلاف الجوِّي العلوي حوالي 547 كم (340 ميل) وبزواية ميل 28.5°. يتغيَّر موقعُه ومدارُه مع مرور الوقت بطريقة غير معرُوفة لا يُمكن التَّنبُّؤ بها بشكلٍ دقيق. كما أن كثافة الغلاف الجوي العلوي تختلف بسبب عوامل كثيرة، وهذا يعني أنَّ توقُّع موقع هابل في فترة زمنية من سِّتة أسابيع قادمة سيصاحبها خطأ تقدير بنسبة تصل إلى 4000 كم (2500 ميل) عن موقعه الصَّحيح. تُوضعُ جداول المراقبة عادة في غضون عدة أيام فقط مُقدمًا، لأنَّه إن طالت المُهلة فإنَّ ذلك يعني أنَّ هُناك فُرصة كبيرة في أنَّ الهدف المُراد رُؤيته سيكون غير قابلٍ للرَّصد في الوقت الذي كان من المقرَّر أن يتم ملاحظته.الدَّعم الهندسي لمرصد هابل تقدمه وكالة ناسا للفضاء في مركز غودارد لرحلات الفضاء بغرينبيلت وهُو يقع على بُعد 48 كم (30 ميل) شمال معهد مراصد عُلُوم الفضاء. يعملُ مرصد هابل في الرصد لمدة 24 ساعة في اليوم عن طريق فِرق وحَدَات التَّحكم الأربعة ويُسمَّون "بفريق عمليات رحلات هابل".

كارثة تشالنجر والتَّأخير والإطلاق

المقالة الرئيسة: كارثة مكوك الفضاء تشالنجر

 

مرصدُ هَابِل وهو ينفصلُ عن مكُوك الفَضَاء ديسكفري لأول مرَّة إلى مداره في الفضاء في عام 1990.

 

STS-31 هي المُهَمَّة الخَامِسَة والثَّلاثين من مهمَّات وكَالة الفَضَاء الأمريكيَّة وفي هذه المهمَّة يَقُومُ مَكُوك الفَضَاء ديسكفري بحمل مرصد هَابل الفَضَائي إلى المدار. 24 أبريل 1990..

في بداية عام 1986 كانت احتمالية إطلاق مرصد هَابل في شهر أكتوبر ممكنة؛ إلا أن كارثة انفجار مكوك الفَضَاء تشالنجر في 28 يناير 1986 بعد ثلاثة وسبعون ثانية فقط من إقلاعه، والتي أودت بحياة جميع طاقم المكوك والبالغ عددهم سبعة أشخاص، أجبرت ناسا على التَّوقُف وتأجيل موعد الإطلاق لعدَّة سنوات. نُقلت الأجزاء التي تمَّ الانتهاء من تصنيعها إلى مخزن نظيف يعمل ويُطهَّر بغاز النيترُوجين إلى أن يُعلن عن موعد إطلاقٍ جديد للمرصد. بسبب هذه الكارثة ازدادت تكاليف المشرُوع لتصل إلى 6 ملايين دُولار شهرياً، ممَّا جعل التَّكاليف الإجمالية لهذا المشرُوع تصل لمستوى أعلى من ذي قبل. سمح هذا التَّأخير للمهندسِين بإجراء اختباراتٍ واسعة النِّطاق مثل تطوير البطَّاريَّات الشَّمسية، كما أدخلوا تحسينات على الأجهزة الأُخرى كذلك. علاوةً على ذلك، فلم يكُن مركز التَّحكُّم الأرضي لمرصد هابل جاهزًا بعد في 1986، وهُي نفس السَّنة التي تقرَّر فيها إطلاق المرصد، وبالكاد جهز عند موعد الإطلاق في عام 1990.في عام 1988 استؤنفت رحلات المكُوك الفضائية وتحدَّد موعد إطلاق جديد ليكُون في عام 1990. في 24 أبريل 1990 انطلقت بعثة STS-31 وهي بعثة نقل مرصد هابل الفضائي عن طريق مكوك الفضاء ديسكفري إلى المدار الذي حُدِّد له.بلغت تقديرات تكلفة المشرُوع الأوَّلية 400 مليون دُولار؛ ولكنَّ بناء هذا المرصد قد كلَّف فعلياً 4.7 مليار دُولار، مُتجاوزًا ميزانيته السَّابقة بأضعافٍ كثيرة. تشير التقديرات بشكل مستمر أنَّ تكاليف مشرُوع مرصد هابل الفضائي قد ارتفعت بأضعافٍ أكثر من ذلك لتصل التَّكلفة التَّقريبيَّة إلى 10 مليارات دُولار في عام 2010.

العيب في المرآةبعد أسابيع من إطلاقه، لاحظ العُلماء أَنَّ الصُّور التي يُرسلُها المرصد ليست بتلك الجودة على الرُّغم من وُضُوحها، وهذه المُشكلة قد أشارت إلى وُجُود عيب في النِّظام البَصَري. على الرغم من أنَّ الصُّور الأُولى بدت أَكثر وُضوحًا من تلك التي تلتقطُها المراصد الأَرضيَّة، إلا أن هابل فشل في التقاط صُور ذات جودة عالية وتركيز واضح، عكس ما كان ينتظره عُلماء الفلك. توزَّعت الصُّور المتلقطة لمصادر نقطية على نصف قُطرٍ أكبر من ثانية قَوسيَّة واحدة، بدلًا من دالة التوزيع النقطي التي تركز الصورة ضمن دائرة نصف قطرها 0.1 ثانية قوسيَّة، وهذا هُو ما كان مُحدَّدًا في معايير تصميم المرصد.

0:39

فيديو ثلاثي الأبعَاد لمِقرَاب هَابل وهو يدُور في الفضاء

أظهرت تحاليل الصُّور الخاطئة أَنَّ سببُ المُشكلة هُو وُجُود عيب في صقل المرآة الأوَّليَّة للمقراب؛ وذلك على الرغم من أنَّها كانت قد صُنعت وصُقلت بدقَّة بالغة، إلا أن الخلل الانحرافي بنحو 10 نانُومتر ومقْياسُ مجال رُؤية مُسطَّح للغاية بنحو 2200 نانُومتر (2.2 ميكرومتر)، كان كارثيًّا بالشكل الكافي لحدوث زيغ كروي، الأمر الذي تسبَّب في جعل الضَّوء المُنعكس عن حافَّة المرآة يُركِّز على نُقطةٍ مُختلفةٍ عن مركز المرآة.أثَّر عيب المرآة على الرصد العلمي، فرغم أن مركز دالة التوزيع النقطي الزائغ كان ظاهراً بما فيه الكفاية ليسمح برصد عالي الدِّقَّة للأَجسام اللَّامعة، وأن التَّحليل الطَّيفي للمصادر النقطية قد تأثر بهذا الخلل بفُقدان الحساسية فقط؛ إلا أن فُقدان الضَّوء إلى الهالة غير المركزة قد تسبَّب في التقليل من قُدرة المقراب على رصد الأجسام الباهتة على نحوٍ كبير أو على القيام بتصويرٍ مرتفع التبايُن. وهذا يعني تقريبًا أن جميعُ البرامج والأَجهزة المُتخصِّصة الكونية قد تعذَّر عملها بشكلٍ أساسي، لأَنَّ وظيفتُها كانت مُرتبطة بمُراقبة الأَجسام الباهتة، والتي كانت ذات بُعد استثنائي. بسبب هذا العيب أصبحت ناسا ومرصد هابل أُضحُوكةً بين النَّاس، إلى درجة وصفه بأنَّهُ فيل أبيض. وكمثال على ذلك، في عام 1991 صُور مرصد هابل الفضائي في الفيلم الكُوميدي (The Naked Gun 2½: The Smell of Fear)، مع سفينة لوسيتينيا وسفينة زيبلين 129 هيندينبيرغ الهوائيَّة الألمانية وسيَّارة فُورد إدسل؛ وجميعُ هذه الأشياء اشتهرت بفشلها. ومع ذلك فإنَّه في السَّنوات الثَّلاثة الأُولى من مُهمَّة مرصد هابل وقبل التَّصحيحات البصريَّة رصد هابل أعدادًا كبيرة من الرصد العلمي لأَجسام مُختلفة أقل أهمية في الفضاء والَّتي لم تتأثر بوُجُود الانحراف الكروي في مرآة هابل. كان هذا الخلل في المرآة واضحاً ومتكرراً، بشكل تمكَّن فيه عُلماء الفلك من التَّعويض الجُزئي للانحراف عن طريق استخدام تقنيَّات مُعالجة الصُّور المُتطوِّرة مثْل إزالة الالتفاف. استغرق وُجُود هذا الانحراف 3 سنوات قبل أن تُقرَّر وكالة ناسا إرسال بعثة لإصلاحه في الثاني من شهر ديسمبر عام 1993.

أصل المشكلة

 

صُورة مُستخرجة من الكاميرا الكوكبيَّة واسعة المجال (WF/PC) يظهرُ فيها أنَّ الضَّوء الآتي من النَّجمة قد انتشر على مدى واسع بدلًا من أن يرتكز على مساحة بكسل أقلِّ من ذلك.

تأسَّست لجنة للتحقيق في أصل المشكلة برئاسة ليو ألين مُدير مختبر الدفع النفاث. وجدت اللَّجنة أنَّ المصحِّح الصفري، وهو جهازٌ بصري يُستخدم في اختبار شكل المرايا الكبيرة غير الكرويَّة، قد جُمع بشكلٍ غير صحيح، فقد كانت إحدى العَدسَات خارج موقعها بمقدار 1.3 ملم.قامت شركة بيركن إلمر باستخدام مُصحِّح صفري تقليدي خلال عمليَّة الصَّقل والتَّلميع الأوَّلي للمرآة، ومع ذلك فقد كانت الخُطوة النِّهائيَّة هي كشف وحساب المرآة بعد الصَّقل. قام العاملون في الشَّركة باستخدام مُصحِّح صفري مصنُوع على حسب طلبهم والذي تميَّز تصميمُه بالصَّرامة في حد السماح. لقد أَدَّى التَّجميع غير الصحيح للجهاز في جعل المرآة مصقُولة بدقَّة مُتناهية ولكن بشكلٍ خاطئ. كان من الممكن تدارك هذه المُشكلة قبل إطلاق المرصد لأنَّهُ وبسبب مشاكل تقنيَّة احتاجت بعض الاختبارات التي أُجريت للمقراب أن تستخدم مصحَّحين اثنين من المُصحِّحات الصفريَّة. أظهرت تلك الاختبارات عن وُجُود مُشكلة الزَّيغ أو الانحراف الكروي وأُرسلت النَّتيجة للمسؤولين ولكن تلك التَّقارير لم تُعطى أيَّة أَهميَّة نظرًا لاعتبار المُصحِّح الصفري المصمَّم أكثر دقة، لذا تمَّ تجاهُل نتيجة تلك الاختبارات دُون أيِّ اهتمام.بسبب ذلك العيب في المرآة ألقت اللَّجنة باللَّوم على شركة بيركن إلمر بسبب قُصُورها لعدم اهتمامها بنتائج الاختبارات التي أجرتها. كان التَّوتُّر في العلاقات بين وكالة الفضاء الأمريكية ناسا وشركة بيركن إلمر للبصريَّات قد زاد أثناء بناء المقراب بسبب عدم تقيُّد الشركة بالجدول الزَّمني وزيادة التَّكاليف. وقد علمت ناسا أنَّ بيركن إلمر لم تقُم بالمراجعة أو الإشراف التَّام أثناء بناء المرآة بشكل ملائم، ولم تضع أفضل عُلماء البصريَّات لديها للعمل في هذا المشرُوع الكبير كما كان مُتَّفقاً عليه، وعلى وجه الخُصُوص لم تُشرك بيركن إلمر مُصمِّمي البصريَّات الذين لديها أثناء بناء المرآة ولا حتَّى عند التَّحقُق منها. في حين ألقت ناسا باللَّوم على إدارة بيركن إلمر بسبب فشلها في التَّحقُّق عن المرآة فقد أنتُقدت ناسا هي الأُخرى بسبب عدم التقاط القُصُور في العمل وأيضًا على عدم مُراقبة الجودة واعتمادها الكُّلِّي على نتائج جهاز واحد فقط.

الحل

 

المجرَّة اللَّولبيَّة M100، صورة التقطها مرصد هابل وهنا مُقارنَة لدقَّة الصُّورة قبل وبعد تَصحيح البصريَّات.

صممت مهمة المقراب على أن تتضمن بعثات للصيانة والخدمات المتعلقة، مما جعل عُلماء الفلك يبحثون عن حلول محتملة لمشكلة عيب المرآة، والتي من الممكن تطبيقها في بعثة الصيانة الأولى والمقرَّرة في عام 1993.

كانت شركة كوداك قد صنعت المرآة الاحتياطيَّة لمرصد هابل، إلا أنَّهُ من المُستحيل استبدال المرآة في مداره في الفضاء؛ كما سيكون إرجاعِ المقراب إلى الأرض لتجديد المرآة ومن ثم عودته للفضاء أمراً مُكلفاً للغاية وقد يستغرقُ وقتًا طويلًا. بدلًا من استبدال المرآة بأكملها تم تصميم مُعدَّات بصريَّة جديدة لها نفس درجة الانحراف الكروي ولكن بشكلٍ مُعاكس للانحراف الموجُود في مرآة هابل لتقوم دور "النَظَّارات" من أجل تصليح الانحراف الكروي.كانت الخُطوة الأولى هي وضع توصيفٍ دقيق للخطأ الموجُود في المرآة الرئيسيَّة. قام علماء الفلك بالعمل على ذلك عن طريق الرُّجُوع إلى الصُّور السابقة التي التقطها مقراب هابل، ومنها استطاعُوا تحديد الثابت المخروطي للمرآة، إذ صُنعت بـ −1.01390±0.0002 بدلًا من −1.00230 وهو الرَّقم الذي كان يجبُ أن تكُون عليه. وقد استنتج نفس الرقم أثناء تحليل الُمصحِّح الصفري التَّابع لشركة بيركن إلمر والذي استُخدم في حساب الثابت المخروطي للمرآة أثناء صُنعها، وكذلك ظهر نفس الرقم من تحليل بيانات التَّداخُل الموجي التي تم الحُصُول عليها خلال تجارب المرآة.

 

البدِيل التَّصحيحي البَصَري والمحوَري (COSTAR) في متحف الطيران والفضاء الوطني.

بسبب طبيعة التَّصميم المُختلفة للأدوات في مرصد هابل فقد تطلَّب تصميم مجمُوعتين مُختلفتين من المصحِّحات البصريَّة. صُنعت الكاميرا الكوكبيَّة واسعة المجال 2 من أجل استبدال الكاميرا الكوكبيَّة واسعة المجال (WF/PC) متضمِّنة مرايا مُتتابعة تعمل على توجيه الضَّوء بشكلٍ مُباشر على شرائح أجهزة اقتران الشُّحنات الأربعة المُنفصلة لتصحيح كاميرتي المقراب. لذا فإنَّ وضع عيب انحراف مُعاكس في أسطُح المرآة قد يُلغي تمامًا الانحراف من على السَّطح الرئيسي ومع ذلك فإنَّ الأَدوات الأُخرى تفتقر إلى وُجود أسطُح مُتوسِّطة يُمكن من خلالها أن تعبُر منها، وبسبب عدم وُجُود ذلك فقد تطلَّب الأمر صُنع جهاز تصحيح خارجي لتلك الأَدوات.صُمِّم البديل التَّصحيحي البصري والمحوري (Corrective Optics Space Telescope Axial Replacement) لتصحيح الانحراف الكروي للضَّوء السَّاقط على كاميرا الأجسام الخافتة (FOC) والمحلِّل الطَّيفي للأجسام الخافتة (FOS) ومُحلِّل غُودارد الطَّيفي عالي الدِّقَّة (GHRS). يتألَّف البديل التَّصحيحي من مرآتين على قاعدةٍ أساسيَّة واحدة موضوعتين في طريق مسار الضَّوء لتصحيح الانحراف الكروي. كان يجب إزالة إحدى الأجهزة التي كانت موجودة في المرصد من أجل إتاحة المجال لوضع البديل التَّصحيحي البصري والمحوري (COSTAR) ولم يكن لدى روَّاد الفضاء سوى أن يُضحُّوا بالمضواء عالي السُّرعة في سبيل تعديل الانحراف. في عام 2002 جميع الأجهزة المتعلِّقَة بـ (COSTAR) استُبدلت بأجهزة أُخرى مُتطوِّرة بحيث أنَّ لديها عدسات تصحيحيَّة خاصَّة بها. أُزيل البديل التَّصحيحي البصري والمحوري وأُعيد في عام 2009 إلى الأرض؛ وهو الآن معرُوض في متحف الطيران والفضاء الوطني في العاصمة واشنطن. المنطقة التي كانت تحتوي على البديل التَّصحيحي في مقراب هابل أصبحت الآن تحتوي على جهاز المحلِّل الطَّيفي للأُصُول الكونيَّة (COS).

البعثات والأجهزة الجديدة

 

 

Canadarm 1 (على اليمين) خلال مُهمَّته الفَضَائية (STS-72)

صُمَّم مرصد هابل لاستيعاب الخدمات العامَّة والمعدَّات المتطوِّرة التي ستُوضع فيه. فقد أُطلقت بعثات الخدمات الخمسة (1، 2، 3B ،3A و 4) لأوَّل مرَّة عن طريق وكالة الفضاء ناسا باستخدام مكُوك فضائي في ديسمبر 1993 بينما كانت آخر بعثاتها في مايو 2009. كانت بعثات الخدمات المُرسلة لهابل عن طريق مكوك الفضاء إنديفور حسَّاسة للغاية، فقد بدأت عمليَّات الإصلاح بمُناورات فضائية من أجل استرجاع المرصد عن طريق ذراع مكُوك التَّحكُّم عن بُعد Shuttle Remote Manipulator System ـ (SRMS)، يُعرف أيضًا بمُسمَّى آخر Canadarm أو Canadarm 1 لأنه يُشبه الذراع. لمُدَّةٍ تتراوح بين 4-5 أيَّام قام الرُّواد بعمليات الإصلاح الضَّرُوريَّة واستبدال الُمعدَّات الموجُودة فيه بمُعدَّات مُتطوِّرة وجديدة من أجل رفع مُستوى المقراب الفضائي بالإضافة إلى ذلك فقد قاموا بوضع أدواتٍ جديدة له. بعد الانتهاء من المهمَّة يوضع المرصد في مدارٍ فضائي أعلى من مداره السابق لتجنُّب التَّدهوُر المداري الذي قد يحدُث من مُقاومة المائع الجوِّي.

بعثة الخدمة 1

طالع أيضًا: إس تي إس-61

 

رائدا الفضَاء موسغريف وهوفمان وهُما يضَعَانِ البَدِيل التَّصحِيحِي البَصَري خِلال البِعثَة الأُولى.

بعد اكتشاف مُشكلة الانحراف الكروي في المرآة احتلَّت بعثة الإصلاح الأُولى للمقراب أهمية كبيرة حيثُ قام رُوَّاد الفضاء بعملٍ كبير لتثبيت المصحِّحات البصريَّة. لقد دُرِّب سبعة من رُوَّاد الفضاء لهذه البعثة على مئة أداة مُتخصِّصة في الأَرض قبل الانطلاق من أجل إصلاح المقراب في المدار الخارجي.

 

ثلاثة من روَّاد الفضاء وهُم يتَدرَّبُون على إصلاِح الكَامِيرا الكَوكَبيَّة واسِعَة المجَال بنسَخةٍ شَبيهةٍ لمرصَدِ هابل داخِل حَوضٍ من المَاء. 5 مايو 1993

في ديسمبر 1993 أُطلق مكوك الفضاء إنديفُور حاملًا معهُ سبعة من روَّاد الفضاء في البعثة الأولى، وسُميت ببعثة الخدمة 1 (SM1) للقيام بعمليَّة الإصلاح،

التي استمرَّت مع إضافة المُعدَّات الجديدة لأكثر من عشرةِ أيَّام.

استُبدل المضواء عالي السُّرعة (HSP) بالبديل التَّصحيحي البصري والمحوري (COSTAR) كما استُبدلت الكاميرا الكوكبيَّة واسعة المجال (WFPC) بالكاميرا الكوكبيَّة واسعة المجال 2 (WFPC2) التي احتوت على نظام تصحيحي بصري داخلي. استُبدل كذلك لوحين من ألواح الخلايا الشَّمسيَّة التي كانت على شكل أنابيب زرقاء مع النواقل الإلكترونيَّة، ويمتلكُ كل لوح غطاء من الخلايا الشَّمسيَّة التي تُحوِّل طاقة الشَّمس إلى كهرباء بقُدرة 2800 واط. طول اللَّوحان 8×40 قدم وقد صُمَّم هذان اللوحان بحيث يُمكن طيِّهما من قِبلِ روَّاد الفضاء أثناء العمل عليه واستُبدلت المداور الأربعة وتتميَّز المداور بأنَّها أدوات لتحديد الاتِّجاه. كذلك تم تغيير وحدتين كهربائيتين، بالإضافة إلى مكونات كهربائية أخرى ومقياسَي مغناطيسية. إضافًة إلى كل تلك الأشياء فقد رُقِّيَ الحاسُوبين الموجودين على متن المقراب بمُعالجات مُساعدة (Coprocessor). وهكذا أصبح المقراب أقوى من ذي قبل. في 9 ديسمبر من نفس العام انتهى رُوَّاد الفضاء من مهمَّتهم.أعلنت ناسا في 13 يناير 1994 عن نجاح بعثتها، وكانت أُولى الصُّور المُرسلة أكثر وضُوحًا ودقَّة من ذي قبل.

كانت هذه البعثة في ذلك الوقت من أكثر البعثات تعقيدًا بسبب النشاط خارج المركبة الفضائية، والذي أجري خمس مرَّات على فترات مطولة للقيام بإصلاحات المرصد في المدار الجوِّي للأرض. كان للنَّجاح الكبير للبعثة إيجابياته لوكالة الفضاء الأمريكية ورُوَّادها مع تطويره ليُصبح أقوى ممَّا كان عليه.

 

مقراب هابل كما يُرى من مكُوك ديسكفري بعد ثوانٍ من بدءِ مُهِمَّتِه، فبراير 1997

 

رائدا الفضاء ستيفن سميث وجون إم جرونسفيلد وهُما يَستَبدِلان الجيرُوسكُوبات في بعثَةِ الخِدمَة الثَّالثَة-أ SM3A

 

رائدا الفضَاء جيمس نيومان ومايكل ماسيمينو وهما يُزيلان كاميرا الأجسام الخافتة لوضع الكاميرا الاستقصائيَّة المُتقدمة بدلًا منها. 7 مارس 2002.

بعثة الخدمة 2

طالع أيضًا: إس تي إس-82

انطلقت البعثةُ الثَّانية في فبراير 1997 على متن مكُوك الفضاء ديسكفري لاستبدال كُلًّا من: محلِّل غُودارد الطَّيفي عالي الدِّقَّة (GHRS)، المُحلِّل الطَّيفي للأجسام الخافتة (FOS) حيث وضع مكانهما المحلل الطيفي التصويري للمقراب الفضائي (STIS) وكاميرا المجال القريب من تحت الأحمر والمطياف متعدد الأجسام (NICMOS)، بالإضافة إلى استبدال مسجِّلات علمية وهندسيَّة بمسجِّل الحالة الصلبة، كما أُصلح العازل الحراري. يحتوي (NICMOS) على مشتت حراري مصنُوع من النيتروجين الصلب للحدِّ من الضوضاء الحراريَّة، ولكن بعد فترة وجيزة من وضعه ظهر تمدُّدً حراري غير مُتوقَّع في جزءٍ من المُشتِّت الحراري ممَّا تسبَّب في مُلامسة الحاجز البصري، وقد أدَّى ذلك إلى زيادة درجة الحرارة للجهاز وتقليل العُمر المُتوقَّع لهذا الجهاز من 4.5 سنوات إلى سنتين.

بعثة الخدمة 3A

طالع أيضًا: إس تي إس-103

انطلقت البعثة الثَّالثة في ديسمبر 1999 على متن مكُوك الفضاء ديسكفري، وقد قُسَّمت هذه البعثة إلى بعثتين هما 3B و3A بسبب تعطُّل ثلاثة من الجيروسكوبات الستَّة التي كانت على المرصد، بينما تعطَّل الجيروسكوب الرَّابع قبل الانطلاق للبعثة الثالثة ببضعة أسابيع، وهذا العُطل قد جعل المقراب غير قادرٍ على القيام بدوره في الرصد العلمي. في هذه البعثة تمَّ تغيير جميع الجيروسكوبات الستَّة واستُبدلت بحسَّاسات التَّوجيه الدَّقيق وثُبِّت في الحاسُوب مُعدَّات تحسين للتحكم في التيار الكهربائي Voltage Improvement Kit ـ (VIK) لمنع البطَّارية من أن تُشحن بشكلٍ زائدٍ عن حاجتها. بالإضافة إلى ذلك فقد استُبدلت في هذه البعثة أغطية العزل الحراري.استُبدل الحاسُوب الفضائي DF-224 بحاسوبٍ جديد هو أسرع في عمله بعشرين مرَّة عن السَّابق ويحتوي على ذاكرةٍ هي ستُّ مرَّات أكبرُ ممَّا كانت عليه. زاد كل ذلك من إنتاجيَّة القيام بالمزيد من الأوامر المُرسلة من الأرض إلى المركبة الفضائيَّة، من خلال السَّماح باستخدام لُغات برمجيَّة حديثة وهذا الشَّيء قد وفَّر الوقت والمال.

بعثة الخدمة 3B

طالع أيضًا: إس تي إس-109

انطلقت بعثة الخدمة 3B عن طريق مكُوك الفضاء كُولُومبيا في مارس 2002. وُضعت في هذه البعثة أجهزة جديدة للمقراب. استُبدلت كاميرا الأجسام الخافتة (FOC) والتي كانت آخر الأجهزة الأوَّليَّة الموجودة مُنذُ البداية على المقراب باستثناء حسَّاسات التَّوجيه الدَّقيق) بالكاميرا الاستقصائيَّة المُتقدِّمة Advanced Camera for Surveys ـ (ACS) وكان هذا الجهاز هُو أوَّل الأجهزة العلميَّة التي تمَّ وضعُها مُنذُ عام 1997. بسبب وضعه لم يعُد لمُصحّح البديل البصري أيَّةُ أهميَّة بعد ذلك حيثُ أنَّ جميع الأجهزة الموجُودة فيه قد احتوت بداخلها على مُصحِّحات للانحراف الكروي الموجُود في المرآة الرَّئيسيَّة. طُوِّرت في هذه المهمَّة كاميرا المجال القريب من تحت الأحمر والمطياف متعدد الأجسام (NICMOS) وذلك بإضافة مُبرِّد مُغلق الدورة Closed Cycle Cooler . استبدلت الألواح الشَّمسيَّة للمرَّة الثانية في هذه البعثة مُشكِّلة بذلك زيادة في طاقة المقراب بنسبة 30٪.

بعثة الخدمة 4

طالع أيضًا: إس تي إس-125

 

مَرصَدُ هابل خِلالَ بعثة الخِدمَة الرَّابِعَة (SM4).

 

رائد الفضاء أندرو فيوستل وهو يُزيل البديل التصحيحي البصري والمحوري من مقراب هابل لإضافة المحلل الطيفي للأصول الكونية بدلًا منه، 2009.

 

بطارية مقراب هابل وهي مفتوحة ولا تحتوي على غطاء، هذه البطارية تعمل بالنيكل والهيدروجين

كان من المُقرَّر انطلاق البعثة في فبراير 2005، ولكن أدى وقوع كارثة مكوك الفضاء كولومبيا الذي تحطَّم أثناء دخُوله الغلاف الجوِّي قبل 16 دقيقة من هبُوطه على سطح الأرض فوق تكساس ولويزيانا في عام 2003 إلى تأجيل البعثة وتسبَّب بضررٍ بالغ في برنامجِ هابل الفضائي. قرَّر مُديرُ ناسا شون تشارلز أوكيف في ذلك الوقت أنَّ جميع الرَّحلات الفضائية المُستقبليَّة لابُدَّ لها أن تصل إلى الملاذ الآمن في محطة الفضاء الدولية في حال ظهُورِ مشاكل في المركبة الفضائيَّة أثناء الطيران. بعد هذا الحدث أُلغيت بعثات الخدمات لمرصد هابل ومحطَّة الفضاء الدُّوليَّة بسبب عدم وُجُود مركبة فضائيَّة. هُوجِمَ هذا القرار من قبل العديد من عُلماء الفلك الذين شعرُوا أن مقرابُ هابل له من الأهميَّة الكبيرة بحيث أنه يستحقُّ المُخاطرة البشريَّة. كما أعلن أن خليفةُ مقراب هابل المُستقبلي هو مقراب جيمس ويب الفضائي، والذي من المتوقع إطلاقه على أقلِّ تقدير في عام 2018. شكّلت الفجوة في عدم القُدرة على مُراقبة الفضاء والتي ستكُون بين إيقاف تشغيل مقراب هابل وتكليف خليفته مقراب جيمس ويب الفضائي مصدرَ قلق كبير لكثيرٍٍ من عُلماءِ الفلك، نظًرًا لأهميَّة مقراب هابل العلميَّة.

هُناك مخاوف وقلق لدى عُلمَاء الفلك في أنَّ JWST لن يكون في مدار أرضي منخفض ولذلك لن يكُون من السَّهلِ على رُوَّادِ الفضاء إضافة الأجهزة أو القيام بالإصلاحات اللَّازمة في المُستقبل في حال احتاج إلى ذلك، ومن جانبٍ آخر شعر العديد من عُلماء الفلك أنَّه لا يجب تقليل ميزانيَّة الصِّيانة لمقراب هابل على حساب تكلفة بناء مقراب جيمس ويب الفضائي.

 

بعد وضعِ الكاميرا واسعة المجال 3 WFC3 في المهمَّةِ الرَّابعَة التُقِطت صُورة سدِيم الفَرَاشَة.

في عام 2004 قال شون تشارلز أوكيف أنه سُيفكِّرُ في مراجعة قراره بإلغاء مهمة الصيانة الأخيرة بسبب غضب الشَّعب العارم وكذلك بطََلبٍ من الكونغرس الأمريكي. عقدت الأكاديمية الوطنية للعلوم لجنة رسميَّة في يوليو 2004 وفيها تقرَّر أنَّه يجب الحفاظ على مقراب هابل الفضائي حتَّى مع وُجود المخاطر. ذُكر في التَّقرير "أنه لا يجب على ناسا اتِّخاذ أي عملٍ من شأنه أن يَحُول من إرسال بعثات الخدمات لمقراب هابل عن طريق مكُوك الفضاء". في شهر أُغسطس من نفس السَّنة طلب أُوكيف من مركز غودارد لرحلات الفضاء إعداد اقتراح مُفصَّل لمهام الخدمة الرُوبُوتيَّة ولكن هذا الاقتراح أُلغيَ في وقتٍ لاحق ووُصفت هذه المهمَّة بأنها "غيرِ مُجدية". في نهاية عام 2004 قام العديد من أعضاء الكونغرس الأمريكي برئاسة باربرا مايكولسكي (من ضمنها آلاف الرَّسائل التي كتبها طُلَّأب المدارس من أنحاء البلد) يطلبون من إدارة الرئيس الأمريكي في ذلك الوقت جورج بوش وناسا بإعادة النَّظر في قرارِ إسقاط هابل ووضع خُططٍ لإنقاذه.في أبريل 2005 قال أحدُ المرشَّحين لرئاسة وكالة ناسا للفضاء والذي يحملُ معهُ شهادة في الهندسة الفضائيَّة مايكل دوغلاس غريفين أنه سيُفكَّر في إرسال مهمَّةٍ فضائيَّة مأهُولة للمقراب. وقد تحقَّق ذلك بعد فترةٍ وجيزةٍ من تعيينه مُديرًا للوكالة خوَّل مركز غودارد لرحلات الفضاء البدء بالتَّحضيرات اللَّازمة للقيام بمهمَّةٍ فضائيَّة مأهُولة لصيانة مرصد هابل ومن هذه المهمَّة سيُحدِّد قراره النِّهائي بشأن المرصد. في أكتُوبر 2006 أعطى مايكل الضَّوء الأخضر للانطلاق وتقرَّر موعد الإطلاق في أكتوبر 2008 بواسطة مكُوك الفضاء أتلانتيس وستستمرُّ البعثة لمُدَّة 11 يومًا. في شهر سبتمبر وقبل شهرٍ من الإطلاق تعطَّلت وحدة مُعالجة البيانات الرَّئيسيَّة لهابل وتوقَّفت جميع البيانات والتَّقارير العلميَّة إلى أن أُحضرت النُّسخ الاحتياطيَّة عن طريق الإنترنت في الخامس والعشرين من شهر أكتوبر عام 2008. هذه الوحدة تساعد على قيادة الأجهزة العلميَّة والتَّحكُم بتحرك البيانات داخل المقراب. بسبب العُطل في وحدة مُعالجة البيانات الرَّئيسيَّة والذي جعل من مقراب هابل مقرابًا لا يُمكنُ الاستفادة منه تأجَّلت المهمَّة إلى أن يجد العُلماء بديلًا لوحدة المُعالجات الرَّئيسيَّة.كانت بعثة الخدمة الرَّابعة وهي مهمة الإصلاح الخامسة والتي انطلقت بواسطة مكُوك الفضاء أتلانتيس في عام 2009 هي آخر الرَّحلات الفضائيَّة لمقراب هابل. في هذه المهمَّة استُبدلت وحدة مُعالجة البيانات الرَّئيسيَّة، أُصلحت أنظمة المحلِّل الطَّيفي التصويري للمقراب الفضائي (STIS)، الكاميرا الاستقصائيَّة المُتقدِّمة (ACS) وعدد من الأنظمة الأخرى ووضعُت بطَّاريَّات مُتطوِّرة من النَّيكل والهيدرُوجين. في هذه المهمَّة أيضًا وُضعت أجهزة جديدة، فقد استُبدلت الكامير الكوكبيَّة واسعة المجال 2 بأُخرى مُتطوِّرة وهي الكامير واسعة المجال 3 (WFC3) وجهاز المحلل الطيفي للأصول الكونية (COS) الذي يتميَّز بوجُود قناتين بداخله، الأولى من أجل فحص الضَّوء فوق البنفسجي البعيد بينما القناة الثانية هي من أجل فحص الضَّوء فوق البنفسجي القريب. وكذلك أعادوا تجديد حسَّاسات التَّوجيه الدَّقيق وأضافُوا ألواح عزل جديدة في الأَماكن التي تحطَّمت فيها أغطية هابل. وُضعت أنظمة التحام فضائية، والتي ستُمكِّن المقراب في الُمستقبل بالتَّخلُّص الآمن إمَّا عن طريق طاقم من رُوَّاد الفضاء أو بالطَّريقة الروبوتيَّة. أُنجز العمل في بعثة الخدمة الرَّابعة وبدأ المقراب يعمل بكفاءةٍ وطاقةٍ كاملة. بقي المقراب على ما هُو عليه في عام 2015.

 

فنِّي وهُو مُمسكٌ بجهاز اقتران الشُّحنة (CCD)

 

فنَّيُّون وهُم يُعاينُون الكاميرا واسِعَة المجال 3 وهي موضوعة بشكلٍ عمُودي (WFC3)

 

المحلِّل الطَّيفي للأُصولِ الكَونِيَّة (COS)

المشاريع الكُبرى

 

إحدى الصُّور المشهُورة التي التقطها مقراب هابل والتي تُدعَى أعمدة النَّشأة تظهرُ فيها نُجُومًا تكوَّنت في العنقُود النَّجمي المفتُوح سديم النَّسر.

مُنذُ أن بدأ برنامجُ هابل نُفِّذت العديد من المشاريع البحثيَّة، البعضُ منها باستخدام مقراب هابل وحده، والأُخرى بالتنسيق بين عدة مرافق مثل مرصد تشاندرا الفضائي للأشعة السينية، المرصد الأوروبي الجنوبي والمقاريب العظيمة. بالرُّغم من قُرب نهاية عمر مقراب هابل إلَّا أنَّه لا تزالُ هناك مشاريع كبيرة مُقرَّرة له ومن الأمثلة على ذلك برنامج الحُقُول المحدُودة Frontier Fields program. وهذا المشرُوع مستوحى من نتائج المُراقبة العميقة التي قام بها هابل للعُنقُود المجرِّي Abell 1689.

المجمع الكوني لدراسة خارج المجرة العميق في مجال تحت الأحمر القريبنُشر خبرٌ صحفي في أغسطُس 2013 أُشير فيه أنَّ المجمع الكوني لدراسة خارج المجرة العميق في مجال تحت الأحمر القريب Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey ـ (CANDELS) هو "أكبر مشرُوع في تاريخ مقراب هابل". تهدُف هذه الدِّراسة إلى استكشاف تطوُّر المجرَّات في بداية الكون ومعرفة الأُصُول الأُولى لبُنية الكون في أقلِّ من مليار سنة بعد الانفجار الكبير. وصف موقع مشرُوع CANDELS أهداف الدِّراسة الاستقصائيَّة ما يلي:

إنَّ المجمع الكوني لدراسة خارج المجرة العميق في مجال تحت الأحمر القريب مُصمَّم لتوثيق الثُّلث الأوَّل لتطوُّر المجرَّة من z = 8 إلى 1.5 عبر التَّصوير العميق لأكثر من 250.000 مجرَّة عن طريق الكاميرا واسعة المجال 3 WFC3/IR والكاميرا الاستقصائيَّة المُتقدِّمة. كذلك فإنَّه سيبحث عن أول نوع Ia SNe ماوراء z> 1.5، ووصف دقَّتها كشُمُوع قياسيَّة لعلم الكون. أُختيرت خمسُ مناطق رئيسيَّة مُتعدِّدة الطُّول الموجي في الفضاء، كُلُّ منطقة لديها بيانات مُتعدَّدة الطُّول الموجي مثل مقراب سبيتزر الفضائي ومُنشآت أُخرى لديها تحليل طيفي للمجرَّات الأكثر إشراقًا. استخدام المناطق الخمسة واسعة الحُقُول تُخفِّف من التَّباين الكوني ولديها عائدات إحصائيَّات قويَّة وعيِّنات كاملة من المجرَّات وصُولًا إلى 109 كُتلة شمسيَّة إلى خارج z ~ 8

برنامج الحقول المحدودة

 

درس برنامج الحُقُول المحدُودة العنقُود المَجرِّي MACS J0416.1-2403

سمِّي هذا البرنامج رسميًّا بحقل هابل العميق 2012 وكان الهدفُ منه تعزيز المعلُومات المبكِّرة في كيفيَّة تشكُّل وتطوُّر المجرَّات عن طريق دراسة المجرَّات عالية الانزياح الأحمر في حقل هابل العميق بمُساعدة عدسة الجاذبيَّة لرُؤية أخفت المجرَّات الباهتة في الكون البعيد.

وصف موقع حقل هابل العميق الأهداف لهذا البرنامج بما يلي: للكشف عن الأماكن التي لا يُمكن الوُصُول إليها حتى الآن z = 5–10 من المجرَّات التي تكون أكثر خفوتًا بـ 10 إلى 50 ضُعفًا.

لترسيخ فهمنا للكُتلة النَّجميَّة وتاريخ تكوين النجوم.

لتوفير أول إحصائيَّة ووصف مورفولوجي لكيفيَّة تكوين النُّجُوم للمجرَّات عند z> 5.

للبحث عن المجرَّات الممتدَّة عن طريق العنقود المجري والذي يكون عند z> 8 لمعرفة البنية الدَّاخلية لها وتضخيمها بما فيه الكفاية باستخدام العنقود المجري من أجل تتبع المطيافية.

الاستخدام العام

 

التجمع النجمي المفتوح Pismis 24 مع سديم NGC 6357

يُمكن لأي شخص التَّقَدم بطلبٍ للحصول على وقتٍ لاستخدام مقراب هابل، لأنَّهُ لا تُوجد أيَّةُ قُيود على أيَّةُ جنسية أو انتماء أكاديمي مُعيَّن، ولكن التمويل من أجل التحليل مُحدَّد فقط للمؤسسَّات التابعة للولايات المتَّحدة الأمريكيَّة. إنَّ التَّنافس على استخدام المقراب كبير وإنَّ خُمس الطلبات المُقدَّمة لكل دورة مُرتَّبة ضمن جدول زمني.يكون التقدَّم بشكلٍ سنوي بحيث تُصنَّف الطلبات إلى "مُراقب عام" وهي الطَّلبات الشَّائعة والتي يستطيع فيها المُراقب تغطية الرصد الروتيني التي سيراها باستخدام المقراب. بينما "اللَّقطة الفوتوغرافيَّة" هي من الطَّلبات التي تتطلب 45 دقيقة أو أقل من وقت المقراب لأخذ صُورة فوتوغرافيَّة عن طريقه. يستخدم وقت "اللقطة الفوتوغرافيَّة" لملء الثغرات في جدول المقراب التي لا يُمكنُ شغلها من قبل برامج GO العاديَّة.يستطيعُ عُلماء الفلك استخدام مُقترحات "Target of Opportunity" والتي تكُون فيها المُراقبة الفلكيَّة مُدرجة في الجدول في حال وُجود ظاهرة فلكيَّة عابرة لفترةٍ بسيطة. بالإضافة إلى ذلك فإن 10٪ من وقت المقراب مُحدَّد لكي يُستخدم من قبل "director's discretionary" ـ (DD) وهو وقتٌ مُخصَّصٌ للمُدراء فقط. يستطيع علماء الفلك التَّقدم بطلب (DD) في أي وقتٍ في السَّنة وعادةً ما يتمُّ منحها لدراسة الظَّواهر العابرة غير المُتوقَّعة مثل المُستَعِرُ الأَعظم.

رصد الهواة

 

صُورة قريبة للأشعَّةِ تحتِ الحمراء التقطتها كاميرا WFC3 في مقراب هابل "للجبل الضبابي" يوضِّحُ فيه ولادة نجم سَدِيم القَاعِدَة. يُمكن مُشاهدة الكثير من النُّجُوم هُنا بسبب شفافيَّتها للحرارة

في عام 1986 أعلن ريكاردو جياكوني وهو أول مدير لمعهد مراصد علوم الفضاء (STScI) أنَّه يعتزم تكريس بعضًا من وقته المُخصَّص للمُراقبة (DD) لعُلماء الفلك الهُواة لكي يستخدمُوا المقراب. كان الوقت المُخصَّص هو بضعة ساعات في كُلِّ دورة ومع ذلك ذلك فإنَّ الهُواة من عُلماء الفلك أبدوا اهتمامًا وحماسًا كبيرين للسَّماح لهم بذلك.تُستعرض طلبات وقت الهُواة بشكلٍ صارم من قبل لجنةٍ من عُلماء الفلك الهواة وتمنح الموافقة للطَّلبات التي لها جدارة علميَّة حقيقيَّة وفائدة وليست مُكرَّرة عن مُقترحات المحترفين، وتتطلب القُدُرات الفريدة من نوعها لمقراب هابل. مُنح ثلاثة عشر من هُواةِ الفلك الوقت المُخصَّص للملاحظة والمراقبة باستخدام مقراب هابل بين الأعوام 1990 و 1997. إحدى الدراسات هي بحث هابل للمذنبات التي تمر بمرحلة انتقالية. أُولى الطلبات هي "A Hubble Space Telescope Study of Posteclipse Brightening and Albedo Changes on Io" نُشرت فيما بعد في مجلَّة إيكاروس وهي مجلَّة مُكرَّسة لدراسات النِّظام الشَّمسي. دراسةٌ أُخرى لمجمُوعةٍ أُخرى من علماء الفلك الهواة نُشرت كذلك في مجلَّة إيكاروس. بسبب انخفاض الميزانيَّة في (STScI) فإنَّ الدَّعم الممنُوح لعلماء الفلك الهواة أصبح غير قابلٍ للاستمرار وبالتالي لم تعُد هناك برامج إضافيَّة خاصَّة لهم.

الاحتفال بذكرى إطلاق المرصد

 

بُرجٌ من الغَاز والغُبار في سديم القاعدة التقطتها الكاميرا واسعة المجال 3 (WFC3) "للجبل الضبابي" (Mystic Mountain). نُشرت هذه الصورة في عام 2010 بمُناسبة الذِّكرى العشرُون لإطلاقِ المقراب في الفَضَاء.

 

صُورةٌ للتجمُّع النَّجمي وسترلوند 2 وما حوله، نُشرت هذه الصُّورة في عام 2015 بمُناسبةِ الذِّكرى الخامسة والعشرون لإطلاقِ المقراب في الفَضَاء.

في 24 أبريل 2010 احتفل مقرابٌ هابل الفضائي بمرور عشرُون عامًا على إطلاقه في الفضاء. وللاحتفال بهذه المُناسبة نشرت ناسا ووكالة الفضاء الأُوروبيَّة ومعهد مراصد عُلُوم الفضاء (STScI) صُورة سديم القاعدة التي التقطها مقراب هابل.في 24 أبريل 2015 وبمناسبة الذكرى الخامسة والعشرون نشرت (STScI) في موقع مقراب هابل الرَّسمي في الإنترنت صُورة للتجمُّع النَّجمي وسترلوند 2 وهُو يبعُد 20.000 سنة ضوئيَّة في كوكبة القاعدة. بينما قامت وكالة الفضاء الأُوروبيَّة بإنشاءِ صفحةٍ خاصَّة له في الذِّكرى الخامسة والعشرون في موقعها الرَّسمي. (http://hubble25th.org).في 24 أبريل 2016 نشرت ناسا صورة لسديم الفقاعة للاحتفال بمرور 26 سنة على إطلاقه.

النتائج العلمية

المشاريع الرئيسية

في بداية العقد 1980 عقدت ناسا و(STScI) أربع لجان للنقاش بشأن المشاريع الرئيسيَّة. كانت هذه المشاريع ذات أهميَّة علميَّة كبيرة وتحتاج إلى استخدام المقراب لوقتٍ أطول من أجل الدراسة. وهذه الأوقات الطويلة من الدراسة ستضمن إنهاء الدراسة العلميَّة لهذه المشاريع في وقتٍ أبكر في حال توقف عمل مقراب هابل في وقتٍ أبكر وغير مُتوقَّع. من بين هذه المشاريع هي: دراسة وسط المجرَّات القريبة باستخدام خُطُوط امتصاص الكوازار Quasar Absorption Lines لتحديد خصائص وسط المجرَّات والمحتوى الغازي من المجرَّات ومجموعة أُخرى من المجرَّات.دراسةُ عُمق وسط المجرَّات باستخدام الكاميرا واسعة المجال (WFC) لتأخذ البيانات اللَّازمة للدَّراسة في الوقت الذي يتمُّ فيه استخدام إحدى الأجهزة العلميَّة في المقراب.مشرُوعُ تحديد ثابت هابل بنسبة خطأ 10٪ بالحد من الأخطاء الدَّاخليَّة والخَارجيَّة في مُعايرة قياس المسافة.

الاكتشافات المهمة

 

صُورة التقطها جهاز المُحلِّل الطَّيفي لصُورِ المقراب الفضائي (STIS) في مقراب هابل عام 2004 يظهر فيها مراحل الشَّفق القُطبي الجنُوبي لكوكب زُحَل لعدَّةِ أيَّام.

ساعد مقرابُ هابل حل بعض المُشكلات الفلكيَّة التي طال أمدها وكذلك تسبَّبت نتائجه في وضع نظريَّات علميَّة لشرح تلك النَّتائج. من بين الأهداف الرَّئيسيَّة المُهمَّة للمقراب هي دراسة المسافة بدَّقة أكبر لنجوم المُتغيِّر القيفاوي، وبالتَّالي الإحاطة بقيمة ثابت هابل، الذي يعبر عن قياس مُعدَّل تمدُّد الكون، والمتعلق بتحديد عمره أيضاً. قبل إطلاق مقراب هابل كانت تَّقديرات مُعدَّل الأخطاء لثابت هابل قد وصلت إلى 50٪، ولكن قياسات هابل لمُتغيِّر قيفاوي لعُنقُود العذراء المجري وعناقيد المجرَّات الأُخرى البعيدة قدَّر قيمة القياس بدقَّة ± 10٪ وهُو ما يتَّفق مع قياسات أُخرى أكثر دقَّة تقدَّم بها المقراب مُنذُ إطلاقه باستخدام التقنيَّات الأُخرى. إنَّ العمر المُقدَّر الآن للكون هو 13.7 مليار سنة؛ والذي كان يقدر ما بين 10 إلى 20 مليار سنة قبل إطلاق هابل للفضاء.ساعد هابل في تقدير عمر الكون كما شكَّك في النَّظريَّات المُستقبليَّة حوله. استخدم عُلماء الفلك من فريق بحث High-Z Supernova ومشروع المُستَعرات العُظمى الفلكي المقاريب الأرضيَّة بالإضافة إلى مقراب هابل لمراقبة المراحل التطوريَّة الأخيرة للمُستَعِر الأعظم بعيدًا عن تأثير الجاذبيَّة ، ووجدوا أن توسُّع الكون يتسارع، ولكن السبب الرَّئيسي لهذا التَّسارع لا يزالُ غير معروف؛ ولكن السبب الأكثر شيُوعًا هي الطَّاقة المُظلِمة التي تملأُ الفضاء.

 

صورةٌ التقطها مقراب هابل تظهرُ فيها علامات لنُقطٍ بُنيَّة لكُويكب يُدعى Shoemaker–Levy 9 موجُودة في نصفِ الكُرَة الجنُوبي لكوكبِ المُشتري.

الصُّور عالية الدَّقَّة التي أُخذت عن طريق مقراب هابل تحتوي على أماكن مُلائمة لانتشار الثُّقُوب السَّوداء في نوى المجرَّات القريبة، في حين أنه قد كانت هُناك فرضية في بداية العقد 1960 أنَّ الثقوب السَّوداء موجُودة في بعض المجرَّات فقط. في العقد 1980 رشَّح عُلماء الفلك عددد من الثُقُوب السَّوداء وبعد العمل على مقراب هابل توضَّح لعلماء الفلك أنَّ هذه الثُّقُوب السوداء موجودة في مراكز كُلِّ المجرَّات.

 

صُورةٌ عالية الدَّقَّة التقطها حقل هابل العميق الفائق يظهرُ فيها كوكبة الكُور.

من الاكتشافات الأُخرى التي أظهرها هابل هو قرص Proplyd في سديم الجَبَّار؛ وكذلك أدلَّة على وجود كواكب خارج المجموعة الشَّمسيَّة تدُور حول نُجُوم شبيهةٍ بالشَّمس؛ بينما لا تزالُ النَّظائر البصريَّة لإنفجار أشعَّةِ غَامَا لا تزالُ غامضة. كذلك استُخدم هابل لدراسة الأجسام خارج النِّظام الشَّمسي مثل الكوكبان القزمان بلوتُو وإريس.

نافذة فريدة على الكون أصبحت مُمكنة بواسطة صور حقل هابل العميق وحقل هابل العميق الفائق وحقل هابل العميق الأقصى التي استخدمت حساسية هابل التي لا مثيل لها في الأطوال الموجيَّة المرئيَّة لخلق صور من بقع في السَّماء هي أعمق ما تمَّ الحُصُول عليه في الأطوال الموجيَّة البصريَّة، لقد كشفت الصُّور عن مجرَّاتٍ تبعُد عنّا مليارات السنوات الضَّوئيَّة، وهذه قد أحدثت ثورة في الأوراق العلميَّة وإيجاد نافذة ورُؤية جديدة على بداية الكون. حسَّنت الكاميرا واسعة المجال 3 الرُّؤية لهذه الحُقُول بواسطة الأشعَّة تَّحت الحمراء والأشعَّة فوق البنفسجيَّة، كما دعَّمَت اكتشاف بعض الأجرام الأكثر بُعدًا حتى الآن مثل مجرة MACS0647-JD.

في فبراير 2006 اكتشف هابل الجُرم السَّماوي SCP 06F6. بين شهري يونيو ويوليو من عام 2012 اكتشف علماء فلك من الولايات المتَّحدة عن طريق مقراب هابل قمر خامس ولكنَّة صغير يتحرَّكُ حول الكُويكب الجليدي بلوتو.

 

فمُ الحُوت ب - Fomalhaut b

في عام 2008 أرسل مقراب هابل صُورًا لكوكب أُطلق عليه فم الحُوت ب - Fomalhaut b، وكانت هذه المرَّة الأُولى التي يتمُّ فيها تصوير كوكب خارجِ المجمُوعةِ الشَّمسيَّة في مارس 2015 أعلن الباحثون أن قياسات شفق قمر غانيميد أظهرت أنه يحتوي على مُحيط تحت سطح الأرض. وجد الباحثون أنَّه باستخدام مقراب هابل لدراسة حركةُ الشَّفق لهذا القمر اتَّضح لهم أنَّ مياه المُحيط الكبير المالحة تُساعدُ في قمع التَّفاعُل بين المجال المغناطيسي لكوكب الُمشتري وغانيميد. قدَّر العُلماء عُمق المُحيط 100 كم (60 ميل) ولكنَّهُ مُحاصر تحت ساق جليدي عُمقُه 150 كم (90 ميل).في 11 ديسمبر 2015 التقط هابل أوَّل صُورة تُنبَّأُ بظُهور المُستعر الأعظم أُطلق عليه "SN Refsdal" والتي تَّم حسابها باستخدام نماذج كُتل مُختلفة للعُنقود المجرِّي الذي شوَّهت الجاذبيَّة ضوء المُستعر الأعظم. في نوفمبر 2014 شُوهد المُستعر الأعظم خلف العُنقُود المجرِّي "MACS J1149.5+2223" وكانت هذه المُشاهدة جُزء من مشرُوع حَقل هَابل العميق. رصد علماء الفلك أربع صور منفصلة للمُستعر الأعظم في ترتيبٍ أُطلق عليه تقاطُع آينشتاين. استغرق الضَّوءُ الآتي من العُنقُود المجرِّي خمس مليارات سنة ليصل كوكب الأرض على الرُّغم من أنَّ المستعر الأعظم قد انفجر قبل 10 مليارات سنة ماضية. الكشفُ عن "SN Refsdal" قد أَسفر كبادرةٍ فريدةٍ للعلماء لاختبار نماذجهم للكتل خاصَّة المادَّة المُظلمة التي تنتشرُ ضمن العُنقُود المجرَّي.في مارس 2016 أعلن العلماء أنَّ هابل قد اكتشف أبعد مجرَّة حتَّى هذا التَّاريخ أُطلق عليها GN-z11. ظهرت نتائج رصد هابل في 11 فبراير 2015 و3 أبريل من نفس العام كجزء من مسح المراصد العُظمى العَمِيق والمجمع الكوني لدراسة خارج المجرة العميق في مجال تحت الأحمر القريب CANDELS/GOODS.

التَّأثير على علم الفلك

 

مراحلُ تطوُّر اكتشاف الكون.

أثَّرت اكتشافات مقراب هابل على علم الفلك، فقد نُشر أكثر من 9000 بحث استُنِدت الأدَّلة فيه على البيانات العلميَّة التي أعطاها هابل في مجلَّات التَّحكيم، وعدد لا يُحصى من المُناقشات العلميَّة. بعد عدَّة سنوات من نشرِ عُلماء الفلك لأُطروحاتهم العلميَّة المُتعلقة بعلم الفلك فإنَّ ثُلثُهم فقط لم يستطيعُوا الاستشهاد بأدلَّة قطعيَّة لبُحوثهم التي نشرُوها. هُناك فقط 2٪ من الاطرُوحات التي نُشرت بالاعتماد على بيانات مقراب هابل التي لم يستطع عُلماء الفلك الاستشهاد بها. الأُطرُوحات التي استُندت على بيانات هابل لديها استشهادات أكثر من البيانات التي استُندت على مصادرٍ أُخرى غير مقراب هابل. في كلِّ سنةٍ من بين 200 أُطرُوحة علميَّة تُنشر فإن 10٪ فقط منها لديها العديد من الاستشهادات العلميَّة التي اعتمدت على البيانات المُقدَّمة من مقراب هابل.مع أنَّ مقراب هابل قد ساعد في نشر العديد من البُحوث الفلكيَّة إلَّا أنَّ تكاليفه الماليَّة قد زادت. فقد كانت هُناك دراسة حول نسبة الفوائد الفلكيَّة للمراصد الفلكيَّة مُختلفة الأحجام بينما الأُطروحات التي اعتمدت على مقراب هابل قد أنتجت 15 ضعفًا من الاستشهادات التي أعطتها المراصد الأرضيَّة والتي يبلغ قُطرُها 4م (13 قدم) مثل مرصد وليام هرشل وتكلفة هابل هي أكثر بـ 100 مرَّة من بناءٍ وصيانة.الاختيار بين بناء المراصد الأرضيَّة والمراصد الفلكيَّة شيءٌ مُعقَّد، لأنَّه قبل إطلاق هابل للمدار كانت تقنيَّات المراصد الأرضيَّة مثل فتحة إخفاء التداخل قد أعطت صُور ضوئيَّة وصُور أشعَّة تحت حمراء عالية الوُضُوح أكثر من هابل. على الرُّغم من محدوديَّة المراصد الأرضيَّة إلَّا أنَّها قد أعطت صُور أكثر سُطُوعًا بـ 108 مرَّة من الأجسام الباهتة التي لاحظها مقراب هابل.

هندسة الطيران والفضاءلقد قدَّم مقراب هابل مع النتائج العلميَّة مُساهمات كبيرة في تطوّر هندسة الفضاء والطَّيران خاصَّة في أداء أنظمة الأجهزة العلميَّة أثناء وجُودها في المدار الجوِّي المُنخفض للأرض. جاءت هذه الأفكار بسبب المدَّة الطويلة التي عمل فيها مقراب هابل في المدار منذ إطلاقه وأجهزته العلميَّة واسعة النِّطاق وكذلك المعلومات التي جُمعت منه والتي أرسلها للأرض لتحليلها ودراستها من قبل العُلماء. لقد ساهم المقراب بشكلٍ خاص في دراسة سلوك وتركيب البوليمر المُدعَّم بألياف الكربون في الفضاء وكذلك التلوث البصري من الغاز المُتبقِّي وتدخُّل الإنسان في الفضاء بالإضافة إلى التَّغيرات التي قد تحصل بسبب الضَّرر الإشعاعي من الإلكترونيَّات وأجهزة الاستشعار؛ وأخيرًا التأثير طويل المدى من العزل مُتعدِّد الطبقات.

بيانات هابل

 

قامَ مِقراب هابل بِتَمديدِ مَسَافات قِيَاسَاته لعَشرِ مرَّات ليَصِل إلى حِسَأبِ مَسَافة دَرب التَّبَّانة.

نقل البيانات إلى الأرضفي البداية خُزِّنت بيانات هابل في المكُوك الفضائي. بعد إطلاق المقراب كانت مرافق التَّخزين تُخزِّنُ البيانات في جهاز تسجيلٍ قديم اعتمد على بكراتِ شريطٍ مغناطيسي لتسجيل الصَّوت (كاسيت) ولكنَّها استُبدلت فيما بعد بوسائط تخزينٍ ثابتةٍ خلال بعثتا الإصلاح 2 و3A. يُرسلُ مقرابُ هابل البيانات التي رصدها مرَّتين في اليوم إلى المدار الأرضي الجُغرافي المُتزامن الذي يدورُ فيه القمر الاصطناعي ومن ثمَّ باستخدام القمر الصناعي للتَّتبُّع وترحيل البيانات العلميَّة (TDRS) إلى هوائي موجات عالي الوضُوح وهُو واحد من أصل اثنين يبلغُ قُطر دائرتُه 60 قدم (18 متر) موجُود في مرفق اختبار وايت ساندز في نيومكسيكو بالولايات المُتَّحدة. ومن ذلك المرفق تُرسل البيانات التي استُقبلت إلى مركز غودارد لرحلات الفضاء ومن ثمَّ إلى معهد عُلُوم مراصد الفضاء لأرشفة البيانات. في كلِّ أسبُوعٍ يُرسلُ هابل زهاء 140 جيجابايت من البيانات التي قام برصدها.

الصُّور الملوَّنةجميعُ الصُّور الآتية من هابل هي ذو تدرُّج رمادي أُحاديَّ اللَّون والسبب في ذلك هي احتواء كاميرات هابل على مجمُوعة مُتنوِّعة من المُرشَّحاتٍ الحسَّاسة لموجاتٍ مُحدَّدة للضَّوء. تُنتجُ الصُّور المُلوَّنة عن طريق الجمع بين الصُّور أُحاديَّة اللَّون المُنفصلة في المُرشحات المُختلفة وتكونُ النَّتيجة من هذه العمليَّة هي صُور بألوانٍ كاذبةٍ من ضمنها حزم التَّردُّدات للأشعَّة فوق الحمراء وتحت الحمراء. عادةً تكُونُ صُور الأشعَّة تحت الحمراء بلون أحمرٍٍ غامق بينما صُور الأشعَّة فوق البنفسجيَّة بلون أزرقٍ غامق.

الأرشيفجميع بيانات هابل موجودة في أرشيف ميكُولُسكي في معهد مراصد عُلوم الفضاء (STScI)، معهد هيرتسبيرغ للفيزياء الفلكيَّة ومركز علم الفلك الفضائي الأُوروبي. عادةً تكون البيانات مُمتلكة وتكُونُ مُتاحة فقط للمسؤول الرَّئيسي (Principal Investigator) وعُلماء الفلك المُعيَّنين من قبل (PI) لمُدَّة عامٍ واحد فقط من نقله. يستطيعُ المسؤول الرَّئيسي طلب تمديد مُدَّة المُلكيَّة أو تقصيرها من الشَّخص المعني في معهد مراصد عُلوم الفضاء.جعل المُراقبون من الرصد في وقت (DD) مَعفيًا من فترة المُلكيَّة ونُشرت نتائجه بشكل فوري على الملأ وكذلك بيانات المعايرة مثل الحُقُول المُسطََّحة والأُطُر الدَّاكنة المُقتطعة. جميع البيانات المؤرشفة هي بصيغة نظام النَّقل في صُورةٍ مرنة Flexible Image Transport System ـ (FITS) وهذه الصِّيغة يستطيعُ عُلمَاء الفلك تحليلها ولكنَّها ليست للاستخدام العام. يهدفُ مشرُوع تُراث هابل في نشر بياناتٍ قليلةٍ للاستخدامِ العام مثل أكثر الصُّور لفتًا للانتباه التقطها المقراب وتكون بصيغتي JPEG وTIFF.

التقليل من نقل البيانات

 

تحليل البيانَات. تعيين أنواع الجُزيئات الموجُودة في الغُبَار الكوني بين وحول المَجَرَّات عن طريقِ قِيَاس طَيف الامتِصَاص بواسطةِ مقراب هَابل الفَضَائي. ينتُجُ عن الامتصَاصِ عُنصرمُعيَّن لخَطٍ أسوَد في الطَّيف.

البيانات الفلكيَّة المأخوذة عن طريق جهاز اقتران الشُّحنة (CCD) يجب أن تخضع لعدَّة خُطُوات مُعايرة قبل أن تكون مُناسبة للتحليل الفلكي. طوَّر (STScI) برامج تقُوم بالمُعايرة التلقائيَّة حينمُا يقومُ أحدٌّ ما بطلبِ بياناتٍ من الأرشيف عن طريق استخدام أفضل الملفَّات المُتاحة المُعايرة. هذه العمليَّة السَّريعة تجعل طلب البيانات الكبيرة يأخذ مدَّة يوم كامل لتتم مُعالجتها ومن ثم استردادُها. تُسمَّى هذه العمليَّة السريعة بالتقليل من نقل البيانات "Pipeline reduction" وهي شائعة كثيرًا في المراصد الكُبرى. يستطيع عُلماء الفلك استرداد الملفَّات المُعايرة بأنفُسهم وتشغيل برامج تقليل نقل البيانات. يكون هذا مرغوب فيه حينما تكون ملفَّات المُعايرة غير تلك الملفَّات التي تمَّ اختيارُها تلقائيًّا عند الحاجة إليها.

تحليل البياناتيُمكن تحليل بيانات هابل باستخدام العديد من العمليَّات. لقد حافظ معهد عُلوم مراصد الفضاء على برنامج نظام تحليل بيانات علوم المراصد الفضائيَّة الذي احتوى على كل ما يحتاجُه البرنامج لتشغيل برنامج تقليل نقل البيانات على ملفَّات البيانات الخام وكذلك على العديد من أدوات مُعالجة الصُّور الفلكيَّة الأُخرى والتي صُمِّمت خصِّيصًا لمُتطلَّبات بيانات هابل. هذا البرنامج يشتغل بوحدة قياس (IRAF) وتعني (Image Reduction and Analysis Facility) وهُو برنامج مشهور لتقليل البيانات الفلكيَّة.

الأنشطة التوعيةكانت هُناك أهميَّة دائمة لمرصد الفضاء بأن يلتقط صُور مُلفتة لخيال الجمهُور بسبب المُساهمة الكبيرة التي يقُومُ بها دافعُو الضَّرائب لبناءه وكذلك تكلُفته الماليَّة. بعد السنوات الأولى الصَّعبة التي أضرَّت بسُمعة مقراب هابل بسبب الخلل الذي أصاب المرآة سمحت بعثة الخدمة الأُولى في إعادة سُمعة هابل بعدما أنتجت البصريَّات التَّصحيحيَّة العديد من الصُّورِ المُذهلة. ساعدت مُبادرات عديدة في جعل الجمهُور على علمٍ بأنشطة مقراب هابل. في عام 2000 قام مكتب معهد مراصد عُلوم الفضاء (STScI) بتنسيق الجهُود من أجل تَّوعية الجمهُور لأهميَّة هذا المقراب وهذه التوعية لكي تضمن الولايات المتَّحدة لدافعي ضرائبها الفائدة المُترتِّبة من استثمارهم في برنامج مقراب الفضاء. لقد قام معهد مراصد علوم الفضاء بإطلقِ موقعٍ خاصٍّ بمقراب هابل وهو HubbleSite.org. برنامج إرث هابل يعمل انطلاقا من (STScI) ليُقدِّم أفضل الصور عالية الوضُوح لأكثر الأجسام المُلفتة التي لاحظها هابل. فريق برنامج إرث هابل يتكون من فلكيِّين مُحترفين وفلكيِّين هُواة بالإضافة إلى أشخاصٍ لديهم خلفية في علم الفلك. لأسبابٍ علميَّة يمنحُ هذا البرنامج وقت قليل لرصد الأجسام في الفضاء عندما لا تكُون الصُّور المُلتقطة تحتوي على موجاتٍ كافيةٍ لإنشاء صُورةٍ بالألوانِ الكاملة.

 

في عام 2001 أجرَت ناسا استفتاء في الإنترنت عن ما هو أكثر شيء يُريدُون أن يقُوم مقراب هابل برصده، كانت النَّتيجة لهذا الاستفتاء وبأغلبيَّة ساحقة هو اختيارهم لسديم رأس الحصان.

مُنذُ عام 1999 كانت التَّوعية للمقراب في أُورُوبَّا مُتمثلة في مكتب مركز معلومات هابل في وكالة الفضاء الأُوروبيَّة. أُنشئ هذا المكتب في مرفق التَّنسيق الأُوروبي لمقراب الفضاء في مدينة ميونيخ بألمانيا. مهمَّة (HEIC) هي تنفيذ مهام مُتعلِّقة بالتَّوعية والتَّعليمِ في وكالة الفضاء الأوروبيَّة (ESA). يتركز عمل المركز في تسليط الضَّوء على آخر الأخبار والنتائج وكذلك الصُّور المُلفتة للانتباه التي التقطها مقراب هابل. عند زيادة التَّوعية في أوروبا تزدادُ كذلك حصَّة وكالة الفضاء الأوروبيَّة لمقراب هابل (15٪) ويزداد تبرُّع العُلماء الأوروبيون للمقراب الفلكي. تُنتجُ وكالة الفضاء الأوروبيَّة مواد تعليميَّة ونشرة صوتيَّة أُطلق عليها "Hubblecast" لنشر التَّقارير العلميَّة التي نشرها عُلماء الفلك المُحترفين للمُستمعين من العامة.في عام 2001 و2010 فاز مقراب هابل بجائزتين من جوائز إنجاز الفضاء المُقدَّمة من مؤسَّسة الفضاء للأنشطة التَّوعويَّة التي أُنجزت لأجله.

المستقبل

 

مُلاحظة هابل لنظامِ فمِ الحُوت، التُقطت هذه الصُّورة عن طريقِ الكاميرا الاستقصائِيَّة المُتقدِّمة.

تعطُّل المعداتاستُبدلت في البعثات الماضية العديد من الأجهزة العلميَّة بأُخرى مُتطورَّة لتجنُّب الفشل وكذلك لصُنع فُروعٍ جديدةٍ للعلم، فبدون مهمَّات الإصلاح فإنَّ الأجهزة العلميَّة في المقراب ستفشل في عملها. في أغسطس 2004 تعطَّل نظام الطَّاقة في المُحلِّل الطَّيفي لصُور المقراب الفضائي مما جعله غير صالح للعمل. كانت هناك ثلاث مجموعات من الإلكترونيَّات تعمل قبل أن تتوقف في ذلك العام في حين أنَّ المجمُوعة الأُولى من الإلكترونيَّات قد توقَّفت عن العمل في مايو 2001. أُصلحت أنظمة العُطل في المهمَّة الخامسة والأخيرة في مايو 2009. في يونيو 2006 فشلت إلكترونيَّات الكاميرا الاستقصائيَّة المُتقدِّمة (ACS) وفي 27 يناير 2007 فشل مُزوِّد الطَّاقة في تشغيل الإلكترونيَّات الاحتياطيَّة الموجُودة. كانت أجهزة قناة الحاجب الشَّمسي (Solar Blind Channel) هي الوحيدة التي تعمل بسبب استخدامها للجانب الأول من الإلكترونيَّات. أُضيف مُزوِّد طاقة جديد لقناة الزاوية المُتَّسعة (Wide angle channel) في المهمَّة الأخيرة ولكن باختبارٍ سريعٍ لتجربته وجد العُلماء أنَّه لم يُساعد قناة الوضُوح العالي الموجُودة في هابل.

 

رسم مُتحرِّك لطريقة عملِ المدوار (gyroscope) وهٌو يُحافظُ على مِحوَرِ دَوَرَانه.

يستخدمُ مقرابُ هابل المدوار (gyroscope) لاستقراره في المدار من أجل التَّوجيه الدَّقيق والمُطرد للأهداف الفلكيَّة المُراد رصدها. في العادة يتمُّ الحاجة إلى ثلاث مداور للقيام بعملية التَّوجيه والاستقرار. من أجل تسجيل الرصد الفلكي فهو يحتاج إلى مُدوارين ولكن منطقة السَّماء التي يُمكن رصدها قد تكون مُقيَّدة إلى حدٍّ ما لذا هُنالك صُعُوبة في إجراء الرصد الدَّقيق. وضع عُلماء الفلك خطَّة طوارئ احتياطيَّة وذلك عن طريق العمل بمدوارٍ واحد فقط؛ ولكن لو فشلت جميع المداور عن العمل فإنَّ الرصد العلمي الذي يقوم به المقراب سوف يتوقف ولن يكُون مُمكنًا القيام بأيّ رصد آخر جديد. في عام 2005 تقرَّر استعمال مدوارين فقط من أجل تمديد عُمر مهمَّة المقراب وبدأوا بذلك في أغسطس 2005 بأن قامُوا بتشغيل مدوارين فقط بينما الإثنين الآخرين سيكونان في وضعية الاحتياط في حال فشل المجموعة الأولى بينما المدوارين الإثنين الأخيرين سيكونان مُتوقِّفين وغير قادرين على إجراء أي عمليَّة. في عام 2007 فشل مدوار آخر في هابل. مع نهاية بعثة الإصلاح الأخيرة تمَّ تغيير ستَّة مداور (وضع زوجين جديدين من المداور وتجديد مدوار سابق موجود مُسبقًا في المقراب) وقبل إرسال بعثة الإصلاح كانت ثلاثة مداور فقط هي التي بقيت تعمل في المرصد. حدَّد المُهندسين أنَّ السبب في فشل المداور عن العمل هو بسبب تآكل الأسلاك الكهربائيَّة التي كانت كانت توصل الطَّاقة للمُحرِّك الذي يضمُّ هواء الأكسجين المضغُوط المستخدم في توصيل السَّائل المُعلَّق السَّميك. اعتمدت المداور الجديدة التي وُضعت في المقراب بعملها عن طريق النَّيتروجين المضغوط. هذا النَّمُوذج الجديد للمدوار هو أكثر فعاليَّة في عمله من النَّمُوذج القديم الذي اعتمد على الأكسجين المضغوط.

تدهور المدار

 

 

آلية الإلتقاط الناعمة (Soft Capture Mechanism) وقد ثُبِّتت في أسفل مقراب هابل أثناء المهمة الأخيرة لصيانة المقراب في عام 2009.

يدُور هابل حول الأرض في الطَّبقة العلويَّة للغلاف الجوِّي ومع مرور فترة من الزمن قد يتدهور مدارُه بسبب مُقاومة المائع وفي حال تدهور مداره ولم يتمُّ إعادة رفعه للمدار المُناسب فإنَّه سوف يدخُل غلاف الأرض بالاعتماد على تأثير الشَّمس عليه وكذلك تأثره بالغلاف الجوي العلوي. فلو هبط هابل عن مداره وتسبب في دخُولٍ غير مُنضبط لداخل الأرض فإنَّ أجزاء من المرآةِ الرَّئيسيَّة وهيكلها الدَّاعم قد تنجُو ولكن هُناك احتمالية كبيرة في أنها ستسبَّب في إصابة عددٍ من النَّاس وكذلك حُصُول وفيَّات في المكان الذي ستسقُط عليه. في عام 2013 قال نائبُ مُدير المشروع جيمس جيليتيك أنَّ مقراب هابل من المُمكن أن يصمد في عمله إلى عام 2020. بناءً على النَّشاط الشَّمسي والسُّحُب في الغلاف الجوِّي أو عدمهما فإنَّ دخُول مقراب هابل للغلاف الجوِّي الأرضي سوف يحدُث بين الأعوام 2020 و2040. في يونيو 2016 مدَّدت وكالة الفضاء الأمريكية (ناسا) مدَّة خدمة مرصد هابل إلى يونيو من عام 2021.

 

نُسخة مُصغَّرة لمرصدِ هابل الفضائي في مرشفيلد ميسوري مسقط رأس العالم الفلكي إدوين هابل.

كانت ناسا قد وضعت خُطَّة لحماية مقراب هابل واسترداده من الفضاء عند انتهاء مدة خدمته وذلك عن طريق إرسال مكُوكٍ فضائي لأخذه من مداره وفي حال حصول ذلك وتمَّ جلبه للأرض فإنّه سوف يُوضع في مؤسسة سميثسونيان ليراهُ النَّاس ولكنَّ هذا القرار لم يعُد ممكنًا بسبب تقاعُد أسطول المركبات الفضائية عن الخدمة في سنة 2011 وهُم بالتَّرتيب Discovery ثمَّ Atlantis وأخيرًا Endeavour ووضعهم تحت قائمة المركبات الفضائيَّة المتقاعدة، والسَّبب الآخر هي التَّكلُفة العالية لجلبه والخطر المُترتِّب الذي قد يُصيب طاقم رُوَّاد الفضاء أثناء جلبه. بدلًا من ذلك فكَّرت ناسا بوضع وحدة دفع خارجية على المقراب للسماح له بالدخُول المُنضبط إلى الأرض. في النِّهاية ثبَّتت ناسا على المقراب آلية الالتقاط الناعمة Soft Capture Mechanism ونظام رينديزوس Rendezvous System لإنزاله من مداره في المُستقبل إمَّا عن طريق الطَّاقم أو عن طريق رُوبوت فضائي.

ما بعد هابل

المقالة الرئيسة: مقراب جيمس ويب الفضائي

المقرابُ الذي سيكُون خليفًا لهابل هو مقرابُ جيمس ويب الفَضَائي (بالإنجليزية: James Webb Space Telescope ويُدعى اختصاراً (JWST))‏. يتميَّز المقراب جيمس بأنَّه سيرصد في نطاقٍ أوسع من الأشعة تحت الحمراء لا يستطيع تلسكوب هابل رصدها. بإمكان تلسكوب جيمس ويب الفضائي الرصد في الأماكن الأكثر برودة وبُعدًا عن كوكب الأرض عند L2 في نُقاط لاغرانج، حيثُ يقُل التَّداخل الحراري والضَّوئي من الأرض والقمر. يتميز مقراب جيمس بأنَّه لم يُصمّم لتكون له القابلية لتغيير أجهزته في المدار مثل مقراب هابل وسوف يحوم في مدار صغير حول نقطة لاغرانج L2 بعيدا عن الأرض. إنَّ الهدف العلمي الرَّئيسي لمقراب جيمس ويب هو مُراقبة الأجسام الأكثر بُعدًا في الكون والتي لا يُمكن للأجهزة رصدُها ويتوقَّعُ العُلماء رصد نُّجُوم الانفجار العظيم والتي قُدِّر عُمرهَا 280 مليون سنة وهي أقدم من النُّجوم التي اكتشفها مقراب هابل. هذا المقراب هو شراكةٌ دُوليَّة بين ناسا، وكالة الفضاء الأُوروبيَّة ووكالة الفضاء الكنديَّة مُنذُ عام 1996، ومن المُقرَّرِ أن يُحمل إلى الفضاء في المُستقبل عن طريق صاروخ Ariane 5.

 

مقارنة بين مساحة مرآة جيمس ويب الفضائي (25 م²) ومساحة مرآة مقراب هابل (4.5 م²)

 

صورة توضيحيَّة لمقراب جيمس ويب الفضائي والذي سيكُون خَليفًا لمِقرَابِ هَابل

من المقاريب الأُخرى التي من المُمكن أن تكون خليفةً لهابل في حال إطلاقها هو المرصد الفضائي واسع الفتحة ذو التكنولوجيا المتَّقدمة Advanced Technology Large-Aperture Space Telescope - (ATLAST) الذي اقترحه معهد مراصد علوم الفضاء.

مراصد فضائيَّة مُختارة وعدد من الأجهزة العلميَّة

الاسم السَّنة الطُّول الموجي الفتحَة

العين البشريَّة — 0.39–0.75 ميكرون 0.01 م

مقراب سبيتزر الفضائي 2003 3–180 ميكرون 0.85 م

المحلِّل الطَّيفي التصويري للمقراب الفضائي في هابل 1997 0.115–1.03 ميكرون 2.4 م

الكاميرا واسعة المجال 3 في هابل 2009 0.2–1.7 ميكرون 2.4 م

مقراب هيرشل الفضائي 2009 55–672 ميكرون 3.5 م

مقراب جيمس ويب الفضائي من المقرَّر إطلاقه عام 2020 0.6–28.5 ميكرون 6.5 م

المراصد الأرضيَّة وكذلك المقترحات التي وُضعت للمراصد الكبيرة التي تحتوي على فتحات بُؤر واسعة من المُمكن أن تتجاوز مرصد هابل في قدرتها على تجميع الضَّوء الشَّفَّاف والحيُود بسببِ المرايا الكبيرة التي لديها ومع ذلك فإنَّ هُناك عوامل أُخرى تُؤثر على عملها. فهي يُمكن أن تُضاهي هابل في عملها أو تتجاوزه من ناحية الثَّبات وتحسينها للصُّور المُلتقطة بسبب استخدامها لتقنيَّة البصريَّات المُكيِّفة ومع وجود هذه الميزة للبصريات المكيِّفة في المقاريب الأرضيَّة فإنَّها لم تُقلِّل من أهميَّة وجُود مقراب هابل في الفضاء. مُعظم أنظمة البصريَّات المكيفة تحتوي على كاميرا Lucky imaging وهي نوع من الكاميرات الفلكيَّة التي بإمكانها تقليص حجم الضَّوء المُنتشر حول نجم مُعيَّن ودمجه في صُورةٍ واحدة وكمثالٍ على هذا فإن بإمكانها توضيح صُورة حقل عرضه بين 10" إلى 20" بينما تستطيع الكاميرا الموجودة في هابل أخذ صُور أكثر وضوحًا وحِدَّة في حقل عرضه ½2' (150") وعلاوةً على هذا كله فإنَّ المقاريب الفضائيَّة تستطيع دراسة الكون عبر الطَّيف الكهرُومغناطيسي وهذا ما لا تستطيع المقاريب الأرضيَّة عمله بسبب وجود الغلاف الجوِّي للأرض. بالإضافة إلى ذلك فإنَّ الخلفيَّة في الفضاء تكون أكثر سوادًا على عكس داخل الأرض يعود ذلك بسبب قيام الهواء بامتصاصِ الطَّاقة الشَّمسيَّة في النَّهار ويتخلَّصُ منها في اللَّيل مما ينتُجُ عن ذلك انخفاض ضعيف للتَّوهُج اللَّيلي والذي يُمكن رؤيتُه في الأجرام الفلكيَّة مُنخفضة التَّباين.

قائمة بأجهزة مقراب هابلالكاميرا الاستقصائية المتقدمة (ACS)

المحلل الطيفي للأصول الكونية (COS)

البديل التصحيحي البصري والمحوري (COSTAR)

كاميرا الأجسام الخافتة (FOC)

المحلل الطيفي للأجسام الخافتة (FOS)

حساس التوجيه الدقيق (FGS)

محلل غودارد الطيفي عالي الدقة (GHRS/HRS)

مضواء عالي السرعة (HSP)

الكاميرا القريبة من الأشعة تحت الحمراء والمقياس الطيفي متعدد الأجسام (NICMOS)

المحلل الطيفي التصويري للمقراب الفضائي (STIS)

كاميرا كوكبية واسعة المجال (WFPC)

كاميرا كوكبية واسعة المجال 2 (WFPC2)

كاميرا واسعة المجال 3 (WFC3)

صور من مقراب هابل

 

مجرَّتَا الهَوائيَّات؛ في جهة اليسَار مجرَّة NGC 4038 وفي اليمين المَجَرَّة NGC 4039

 

صُورٌ عديدة لاصطدام المجَرَّات ببعضها التقَطَها مقراب هَابل

 

منطقةٍ صغيرةٍ من سَدِيم الرتيلاء في سحَابَة مَاجلَّان الكُبرَى التقطتها الكَاميرا الكوكبيَّة واسعة المَجَال 2

 

V838 وحيد القرن

 

بقَايَا المُستَعر الأعظَم 1006

 

مجمُوعة من المجرَّات المُتداخلة تُدعى أرب 273

 

حَلقَات غازيَّة مُتَعَاقبة حول الجُزء الدَّاخلي من سَدِيم عَين القط التُقطت بالكاميرا ACS

 

هابل وهو مثبت بالمركبة الفضائيَّة وقُبيل الإفراج عنه، مهمَّة الإصلاح SM3B

 

رُوَّاد فضَاء يعمَلُون على هَابل خلال مهمَّة الإصلاح SM4 والأخيرَة

 

ألوَاحُ الطاقَة الشَّمسيَّة في مقراب هابل وهي نصف مطويَّة وفي وضعيَّة الانفتاح أثناء نشر المرصَد في الفضَاء لأوَّلِ مرَّة

 

مقراب هَابل وقد تمَّ تثبيته بالمركبة الفضَائيَّة عن طريقِ ذراعٍ آلية في بعثَةِ الإصلاح الثَّانية

 

صورة التقَطتهَا الكاميرا واسعة المجال 3 بطريقةِ فيلم بانكرُوماتي لقرصٍ من الغُبار في مجرَّةِ قنطورس أ يكشفُ عن وهجٍ نابضٍ بالحيَاة لعناقيدٍ من النُّجُومِ الزَّرقاء 

=====

 
 
 ===نفس المقالة لكن بروابط ويكبيديا وصورها====
مقراب جيمس ويب الفضائي

من ويكيبيديا، الموسوعة الحرة 
مقراب جيمس ويب الفضائي
عرض تلسكوب جيمس ويب الفضائي مع نشر مكوناته بالكامل
شارة مقراب جيمس ويب الفضائي
طبيعة المهمة مقراب فضائي
المشغل ناسا / وكالة الفضاء الأوروبية / معهد مراصد علوم الفضاء
الموقع الإلكتروني www.jwst.nasa.gov
مدة المهمة 10 سنوات (مخطط)
خصائص المركبات الفضائية
المصنع نورثروب جرومان
Ball Aerospace & Technologies
وزن الإطلاق 6,500 كـغ (14,300 رطل)
الأبعاد 20.197 م × 14.162 م (66.26 قدم × 46.46 قدم), الدرع الشمسي
الطاقة 2 كيلوواط
الطاقم ؟؟؟
بداية المهمة
تاريخ الإطلاق أُطلق يوم 25 ديسمبر 2021
الصاروخ أريان 5 ECA
موقع الإطلاق مركز جويانا للفضاء، إيلا-3

المقاول أريانسبيس
المتغيرات المدارية
النظام المرجعي نقطة L2 الخاصة بمدار الأرض-الشمس
النظام المداري مدار الطوق
نقطة الحضيض 374,000 كـم (232,000 ميل)
نقطة الأوج 1,500,000 كـم (930,000 ميل)
الدور المداري 6 أشهر
المرصد الرئيسي
النوع مقراب كورشي
القُطر 6.5 م (21 قدم)
البُعد البؤري 131.4 م (431 قدم)
منطقة التجميع 25.4 م2 (273 قدم2)
الموجات 0.6-28.3 ميكرومتر (من البرتقالي إلى منتصف الأشعة تحت الحمراء)
الاستجابة
Band
S-band, telemetry, tracking, and control
Ka-band, data acquisition
مرصد هابل الفضائي

تعديل مصدري - تعديل
مقراب جيمس ويب الفضائي أو تلسكوب جيمس ويب الفضائي (بالإنجليزية: James Webb Space Telescope)‏ اختصاراً JWST، هو مرصد فضائي طُوِّر بشكل مباشر من قِبل ناسا ووكالة الفضاء الأوروبية ووكالة الفضاء الكندية. من المخطط أن يَخلف تلسكوب هابل الفضائي في إطار مهمة فلاجشيب الخاصة بناسا في الفيزياء الفلكية. سيوفر مقراب جيمس ويب، الذي أطلق في 25 ديسمبر 2021، دقة وحساسية محسَّنتان تفوقان تلسكوب هابل، كما انه سيخلف مقراب سبيتزر الفضائي الذي انتهت مدة خدمته في عام 2020. سيتموضع تلسكوب جيمس ويب الفضائي على بعد 5و1 مليون كيلومتر خلف الأرض والشمس في نقطة لاغرانج L2، وسوف يحوم حول تلك النقطة في مدار دائري ليقوم بالرصد.
وسيمكِّن مجموعة واسعة من التحقيقات في مجاليّ علم الفلك وعلم الكون، بما في ذلك رصد بعض الأحداث والأجرام الفلكية الأكثر بُعدًا في الكون، مثل تكوُّن المجرات الأولى، والتوصيف التفصيلي للأغلفة الجوية للكواكب خارج النظام الشمسي التي من المحتمَل أن تكون صالحة للحياة.
تتكون المرآة الأساسية لمقراب جيمس ويب، وهي عنصر التلسكوب البصري، من 18 قطعة من المرايا سداسية الأضلاع المصنوعة من البيريليوم المطلي بالذهب واللائي تتحد لتكوين مرآة قُطرها 6.5 مترًا (21 قدمًا)، وهي أكبر بكثير من مرآة هابل التي تبلغ 2.4 مترًا (7 أقدام و10 بوصات). وعلى عكس هابل، والذي يرصد الأطياف القريبة من الأشعة فوق البنفسجية، والمرئية، والقريبة من الأشعة تحت الحمراء (من 0.1 إلى 1 ميكرومتر)، سوف يرصد مقراب جيمس ويب في نطاق تردد أقل، من الضوء المرئي ذو الطول الموجي الطويل حتى منتصف الأشعة تحت الحمراء (من 0.6 إلى 28.3 ميكرومتر)، وهو ما سيسمح له برصد الأجرام ذات الانزياح الأحمر العالي والتي ستكون قديمة جدًا وبعيدة جدًا عنا، ولا يستطيع مقراب هابل الفضائي الرصد في ذلك الحيز من الأشعة تحت الحمراء ولا بد من إبقاء المقراب باردًا جدًا ليتمكن من الرصد بواسطة الأشعة تحت الحمراء دون تدَخّل خارجي، لذلك سينشر في الفضاء بالقرب من نقطة لاجرانج الشمس-الأرضL2، وسيُبقي الدرع الشمسي الكبير المصنوع من السيليكون والكابتون المغلف بالألومنيوم ودرجة حرارة مرآته وأجهزته أقل من 50 كلفن.يدير مركز جودارد لرحلات الفضاء التابع لناسا جهود التطوير، وشغل معهد مراصد علوم الفضاء تلسكوب ويب بعد إطلاقه. والمتعاقد الرئيسي هو نورثروب جرومان. وقد سمي على اسم جيمس إدوين ويب، الذي كان مديرًا لناسا من سنة 1961 إلى سنة 1968 ولعب دورًا أساسيًا في برنامج أبولو.بدأ التطوير في سنة 1996 لإطلاق كان مخطَّطًا مبدئيًا لعام 2007 وميزانية قدرها 500 مليون دولار أمريكي، ولكن المشروع تعرَّض للعديد من التأجيلات وتجاوزات التكاليف، وخضع لعملية إعادة تصميم كبيرة في سنة 2005. وانتهى من إنشاء تلسكوب جيمس ويب في أواخر سنة 2016، وبعد ذلك بدأت مرحلة الاختبار المكثَّفة. وفي مارس 2018 أجَّلت ناسا الإطلاق بعد تمزُّق درع الشمس خلال ممارسة النشر. واجل الإطلاق مرة أخرى في يونيو 2018 إثر توصيات من مجلس مراجعة مستقل. وعلق العمل على إدماج واختبار التلسكوب في مارس 2020 بسبب جائحة فيروس كورونا، مؤديًا إلى مزيد من التأخير. وبعد استئناف العمل أعلنت ناسا أن موعد الإطلاق أجل إلى 31 أكتوبر 2021. وأدت مشكلات متعلقة بمركبة الإطلاق أريان 5 إلى تأخير موعد الإطلاق إلى 25 ديسمبر 2021.

تلسكوب جيمس ويب الفضائي كاملا بدرعهِ الواقي من الشمس
محتويات 1 الميزات 1.1 حماية الدرع الشمسي
1.2 البصريات
1.3 الأدوات العلمية
1.4 حافلة المركبة الفضائية
2 المدار
3 المقارنة مع تلسكوبات أخرى
4 التاريخ 4.1 الخلفية
4.2 التطوير
4.3 الإنشاء بدأ عام 1995 واطلق في 2021/12/25
4.4 مشكلات التكلفة والجدول الزمني
4.5 الشراكة
4.6 العروض العامة
4.7 الجدل حول الاسم
5 المهمة 5.1 الإطلاق وطول المهمة
5.2 علم فلك الأشعة تحت الحمراء
5.3 الدعم الأرضي والعمليات
5.4 ما بعد الإطلاق
6 تخصيص وقت الرصد 6.1 برنامج الرصد المبكر للعلوم
6.2 برنامج الراصد العام
7 النتائج العلمية
8 انظر أيضًا
9 المراجع
10 وصلات خارجية
الميزات

مخطط بياني تقريبي لنفاذية غلاف الأرض الجوي (أو العتامة) لأطوال موجية مختلفة للإشعاع الكهرومغناطيسي، بما في ذلك الضوء المرئي.

إعداد إطلاق تلسكوب جيمس ويب في أريان 5.
تلسكوب جيمس ويب الفضائي لديه كتلة منتظَرة بنحو نصف كتلة تلسكوب هابل الفضائي، ولكن مرآته الأساسية، عاكس البيريليوم المطلي بالذهب بقُطر 6.5 مترًا (21 قدمًا) سوف تحتوي على مساحة تجميع أكبر بسِت مرات، 25.4 متر مربع (273 قدم2)، باستخدام 18 مرآة سداسية مع وجود تعتيم قدره 0.9 متر مربع (9.7 قدم2) لدعامات الدعم الثانوية.
جهز تلسكوب جيمس ويب بأجهزة قياس الأشعة تحت الحمراء القريبة، ولكن يمكنه أيضًا رؤية الضوء المرئي البرتقالي والأحمر، بالإضافة لمنطقة منتصف الأشعة تحت الحمراء، وهذا يعتمد على الأجهزة المزود بها. التصميم يعطي أهمية خاصة لنطاق الأشعة القريبة إلى منتصف تحت الحمراء لثلاثة أسباب رئيسية: الأجرام ذات الانزياح الأحمر العالي تتحول انبعاثاتها المرئية إلى الأشعة تحت الحمراء.
الأجرام الباردة مثل أقراص الحطام والكواكب تبعث بشكل أكبر في الأشعة تحت الحمراء.
هذا النطاق تصعب دراسته من الأرض بواسطة التلسكوبات الفضائية الموجودة مثل هابل.
التلسكوبات الأرضية تنظر من خلال غلاف الأرض الجوي، الذي هو معتم في العديد من نطاقات الأشعة تحت الحمراء (انظر الشكل الخاص بامتصاص الغلاف الجوي أعلاه). وحتى عندما يكون الغلاف الجوي شفافًا، فإن العديد من المُركَّبات الكيميائية الموجودة في الهواء، مثل الماء وثنائي أكسيد الكربون والميثان موجودة أيضًا في غلاف الأرض الجوي وهو ما يُعقِّد التحليل بشكل كبير. ولا تستطيع التلسكوبات الفضائية الحالية مثل هابل دراسة هذه النطاقات لأنها مراياها ليست «باردة بدرجة كافية» (مرآة هابل يتم الحفاظ على درجة حرارتها عند حوالي 15 °م (288 ك؛ 59 °ف))، وبالتالي فإن التلسكوب نفسه يشع بقوة في نطاقات الأشعة تحت الحمراء ويعرقل بذلك الرصد والتصوير.سوف يعمل تلسكوب جيمس ويب بالقرب من نقطة لاجرانج L2 الخاصة بمدار الشمس-الأرض، على مسافة تبعد حوالي 1,500,000 كيلومتر (930,000 ميل) خارج مدار الأرض. وبالمقارنة، تلسكوب هابل يدور على ارتفاع 550 كيلومتر (340 ميل) فوق سطح الأرض، والقمر يبعد 384,400 كيلومتر (238,900 ميل) عن الأرض. هذه المسافة تجعل إصلاح أو تحديث أجهزة تلسكوب جيمس ويب بعد إطلاقه مستحيلًا تقريبًا بواسطة سفن الفضاء أو رواد فضاء أثناء مرحلة التشغيل للتلسكوب. يمكن للأجرام القريبة من نقطة لاجرانج أن تدور حول الشمس بالتزامن مع الأرض، مما سيسمح للتلسكوب بالبقاء على مسافة ثابتة تقريبًا، واستخدام درع شمسي واحد لمنع الحرارة والضوء من الشمس والأرض. وهذا الترتيب سيحافظ على درجة حرارة التلسكوب أقل من 50 ك (−223 °م؛ −370 °ف)، وهذا ضروري من أجل رصد الأشعة تحت الحمراء.

عرض ثلاث أرباع التلسكوب من الأعلى

الجانب السفلي (المواجه للشمس)
حماية الدرع الشمسي

وحدة اختبار الدرع الشمسي مكدسة وموسعة في منشأة نورثروب جرومان في كاليفورنيا سنة 2014.
من أجل الرصد في طيف الأشعة تحت الحمراء، يجب إبقاء درجة حرارة تلسكوب جيمس ويب أقل من كلفن؛ وإلا فإن الأشعة تحت الحمراء الصادرة من التلسكوب نفسه ستطغى على أجهزته وتصبح ارصاده ليست واضحة. لذلك يُستخدم درعًا شمسيًا كبيرًا لحجب الضوء والحرارة الصادرة من الشمس والأرض والقمر. موقع التلسكوب بكل أجهزته بالقرب من نقطة L2 الخاصة بمدار الشمس-الأرض حيث تبقي جميع تلك الأجرام الثلاثة على نفس الجانب من التلسكوب الفضائي في جميع الأوقات. ومدار الطوق حول النقطة L2 يتجنب ظِل الأرض والقمر، مما يحافظ على بيئة ثابتة للدرع الشمسي والمصفوفات الشمسية من أجل توليد الطاقة الكافية لتشغيل جميع أجهزته. يحافظ الدرع على ثبات درجة حرارة المعدات الموجودة على الجانب المُظلم، وهذا بالغ الأهمية للحفاظ على المحاذاة الدقيقة لقطاعات المرآة الأساسية.الدرع الشمسي المكوَّن من خمس طبقات، كل طبقة رقيقة مثل رقة شَعر الإنسان، مُكوَّنة من كابتون E وهو فيلم بوليميد متوفر تجاريًا من قِبل شركة دوبونت، مع أغشية مطلية خصيصًا بالألومنيوم على كلا الجانبين ومغطاة بالسيليكون على الجانب المواجه للشمس على أكثر الطبقتين سخونة لعكس حرارة الشمس مرة أخرى إلى الفضاء. وقد كانت التمزقات العرضية لتركيب الفيلم الدقيق أثناء الاختبار في سنة 2018 من بين العوامل التي أدت إلى تأخير المشروع.صمم درع الشمس ليطوى اثنتى عشر مرة بحيث يتلائم مع إنسيابية الحمولة الصافية لصاروخ أريان 5، والذي يبلغ قُطره 4.57 متر (15.0 قدم) وطوله 16.19 متر (53.1 قدم). وبمجرد أن ينشر عند النقطة L2، سوف يُفتَح إلى 14.162 متر × 21.197 متر (46.46 قدم × 69.54 قدم). وقد جمع الدرع الشمسي يدويًا في مانتيك إنترناشونال في هنتسفيل بألاباما، قبل تسليمه إلى نورثروب جرومان في ريدوندو بيتش بكاليفورنيا للاختبار.
البصريات

مهندسون يقومون بتنظيف مرآة اختبار بثلج ثنائي أكسيد الكربون، سنة 2015.

تجميع المرآة الرئيسية في مركز جودارد لرحلات الفضاء في مايو 2016.
مرآة تلسكوب جيمس ويب الأساسية هي عاكس بيريليوم قُطرها 6.5 متر مغطاة بالذهب ومساحة تجميعها تبلغ 25.4 متر مربع (273 قدم2). وإذا بُنيَت كمرآة واحدة كبيرة، فستكون كبيرة جدًا بالنسبة لمركبات الإطلاق الموجودة حاليًا. لذلك تتكون المرآة من 18 قطعة سداسية الأضلاع تُفتح بعد إطلاق التلسكوب. يستخدم استشعار الواجهة الموجية في مستوى الصورة من خلال خوارزمية جيرشبرج-ساكستون من أجل وضع أجزاء المرآة في الموقع الصحيح باستعمال محركات دقيقة للغاية. وبعد هذا الإعداد الأولي سبحتاج فقط إلى إجراء تحديثات عرضية كل بضعة أيام للحفاظ على التركيز الأمثل. وهذا على عكس التلسكوبات الأرضية، على سبيل المثال تلسكوبات كيك والتي تضبط باستمرار قياس أجزاء المرآة الخاصة بهم باستخدام البصريات النشطة للتغلب على تأثيرات جاذبية الرياح. بينما سوف يستخدم تلسكوب ويب 126 محركًا صغيرًا لضبط البصريات من حين لآخر نظرًا لعدم وجود الكثير من الاضطرابات البيئية للتلسكوب في الفضاء.التصميم البصري لتلسكوب جيمس ويب هو عدسة لابؤرية ثلاثية المرآة،
والتي تستخدم المرايا المنحنية الثانوية والثالثية لتقديم صور خالية من الانحرافات البصرية على مدى مجال واسع. وبالإضافة إلى ذلك توجد مرآة توجيه سريع يمكنها ضبط وضعها عدة مرات في الثانية لتوفير استقرار الصورة.
شركة بول للفضاء الجوي والتقنيات هي المتعاقد الفرعي البصري الأساسي لمشروع تلسكوب جيمس ويب الفضائي، بقيادة المتعاقد الرئيسي نورثروب جرومان لأنظمة الفضاء الجوي، بموجب عقد من مركز جودارد لرحلات الفضاء التابع لناسا، في جرينبيلت بماريلاند. صنعت الثمانية عشر جزءًا من المرآة الرئيسية، ومرايا التوجيه الثانوية والثالثية والدقيقة، بالإضافة إلى نسخة احتياطية مصطنعة ومصقولة بواسطة شركة بول للفضاء الجوي والتقنيات بناءًا على خامات أجزاء البيريليوم المصنعة من قِبل العديد من الشركات من بينها أكسيس وبراش ويلمان ومختبرات تينسلي.ركب الجزء الأخير من المرآة الرئيسية في 3 فبراير 2016، والمرآة الثانوية في 3 مارس 2016.
الأدوات العلمية

نموذج NIRCam

نموذج NIRSpec

نموذج مصغر MIRI 1:3
وحدة الأدوات العلمية المتكاملة (ISIM) هي إطار يوفر الطاقة الكهربائية، وموارد الحوسبة، وقدرة التبريد بالإضافة إلى الاستقرار الهيكلي لتلسكوب ويب. صُنِعت من مُركَّب الجرافيت-الإيبوكسي المرتبط بالجانب السفلي من بِنية التلسكوب. وتحمل أربعة أدوات علمية وكاميرا إرشادية. كاميرا نيركام (كاميرا الأشعة تحت الحمراء القريبة) هي جهاز تصوير بالأشعة تحت الحمراء يغطي طيفًا يتراوح من حافة الضوء المرئي (0.6 ميكرومتر) وحتى الأشعة القريبة من تحت الحمراء (5 ميكرومتر). ستخدم NIRCam أيضًا كمستشعر واجهة الموجة للمرصد، وهو مطلوب لاستشعار واجهة الموجة وأنشطة التحكم. وقد صُنِعت من قِبل فريق بقيادة جامعة أريزونا، مع الباحثة الرئيسية مارسيا جيه ريكي. والشريك الصناعي هو مركز التكنولوجيا المتقدمة التابع لشركة لوكهيد-مارتن الموجود في بالو ألتو بكاليفورنيا.مطياف نير (سبكتروجراف الأشعة تحت الحمراء القريبة) سيقوم أيضًا بقياس الطيف على نفس نطاق الطول الموجي. صُنع بواسطة وكالة الفضاء الأوروبية في المركز الأوروبي لأبحاث وتكنولوجيا الفضاء في نوردفايك بهولندا. يضم فريق التطوير القائد أعضاء من إيرباص للدفاع والفضاء، وأوتوبرون وفريدريشهافن بألمانيا، ومركز جودارد لرحلات الفضاء، مع بيير فيرويت (مدرسة ليون نورمال العليا) كعالِم مشروع NIRSpec. يوفر تصميم NIRSpec ثلاثة أوضاع للرصد: وضع منخفص الدقة باستخدام منشور، ووضع R~1000 متعدد الأجرام، ووحدة R~2700 حقل متكاملة أو وضع القياس الطيفي طويل الشق. تبدل الأوضاع عن طريق تشغيل آلية الاختيار المسبق لطول الموجة والتي تسمى مجموعة عجلة المرشَّح، واختيار عنصر التشتت المقابل (المنشور أو الشبكة) باستخدام آلية تجميع عجلة الشبكة. تعتمد كلا الآليتين على آليات ISOPHOT الناجحة لمرصد الأشعة تحت الحمراء الفضائي. يعتمد وضع متعدد الأجرام على آلية مصراع دقيق معقدة تسمح بالرصد المتزامن لمئات الأجرام الفردية في أي مكان في مجال رؤية NIRSpec. تم تصميم الآليات وعناصرها البصرية ودمجها واختبارها بواسطة كارل زايس بألمانيا، بموجب عقد من أستريوم.سوف تقيس MIRI (جهاز قياس الأشعة تحت الحمراءالمتوسطة) نطاق الطول الموجي من منتصف إلى الأشعة تحت الحمراء الطويلة من 5 إلى 27 ميكرومتر. تحتوي على كل من كاميرا الأشعة تحت الحمراء وسبكترومتر التصوير. طور MIRI كتعاون بين ناسا واتحاد من البلدان الأوروبية، وبقيادة جورج إتش ريكي (جامعة أريزونا) وجيليان رايت (مركز المملكة المتحدة لتكنولوجيا علم الفلك في ادنبره باسكتلندا، وهو جزء من مجلس منشآت العلوم والتكنولوجيا (STFC)). تتميز MIRI بآلية عجلات مماثلة لـ NIRSpec والتي طُوِّرت وصُنِعت أيضًا بواسطة كارل زايس بموجب عقد من معهد ماكس بلانك للفلك بهايدلبرج بألمانيا. سلم تجميع المختبر البصري المكتمَل من MIRI إلى مركز جودراد لرحلات الفضاء في منتصف سنة 2012 من أجل الاندماج النهائي في وحدة أدوات العلوم المتكاملة. وMIRI يجب ألا تتجاوز درجة حرارتها 6 كلفن، والمُبَرِّد الميكانيكي بغاز الهيليوم الموجود على الجانب الدافئ للدرع البيئي يوفر هذا التبريد.يستخدم FGS/NIRISS (مستشعر التوجيه الدقيق ومصور الأشعة القريبة من تحت الحمراء والمطياف اللا شَقّي) بقيادة وكالة الفضاء الكندية تحت إشراف عالِم المشروع جون هاتشينجر (معهد هيرتسبيرج للفيزياء الفلكية، المجلس القومي للبحوث بكندا) لتحقيق الاستقرار في خط رؤية المرصد خلال الرصد العلمي. تُستحدم القياسات بواسطة FGS للتحكم في الاتجاه العام للمركبة الفضائية وقيادة مرآة التوجيه الدقيقة لتثبيت الصورة. تقدم وكالة الفضاء الكندية أيضًا وحدة التصوير بالأشعة القريبة من تحت الحمراء المطياف اللا شَقّي (NIRISS) للتصوير الفلكي والتحليل الطيفي في نطاق الطول الموجي من 0.8 إلى 5 ميكرومتر، بقيادة الباحث الرئيسي رينيه دويون في جامعة مونتريال. ونظرًا لأنه يتم تركيب NIRISS فعليًا مع FGS، فغالبًا ما يشار إليهما على أنهما وِحدة واحدة، ومع ذلك فهما تخدمان أغراضًا مختلفة تمامًا، حيث أن إحداهن هي أداة علمية والأخرى هي جزء من البنية التحتية الداعمة للمرصد.
تتميز كل من NIRCam وMIRI براصدات الاكليل التي تحجب أضواء النجوم من أجل رصد الأهداف الخافتة مثل الكواكب خارج النظام الشمسي والأقراص النجمية الدوارة بالغة القُرب من النجوم الساطعة.توفر كاشفات الأشعة تحت الحمراء للوحدات NIRCam وNIRSpec وFGS وNIRISS بواسطة مستشعرات تيليدين للتصوير (شركة روكويل العلمية سابقًا). يستخدم كل من وحدة الأدوات العلمية المتكاملة (ISIM) الخاصة بتلسكوب جيمس ويب الفضائي (JWST) وفريق هندسة قيادة ومعالجة البيانات (ICDH) سبيسواير لإرسال البيانات بين الأدوات العلمية وأدوات معالجة البيانات.
حافلة المركبة الفضائية

رسم تخطيطي لحافلة المركبة الفضائية، الألواح الشمسية باللون الأخضر والألواح ذوات اللون البنفسجي الفاتح هي مشعاعات.
حافلة المركبة الفضائية هي عنصر الدعم الأساسي لتلسكوب جيمس ويب الفضائي، الذي يستضيف عددًا كبيرًا من الحوسبة والاتصالات والدفع والأجزاء الهيكلية، والذي يجمع الأجزاء المختلفة من التلسكوب معًا، وهو يشكل جنبًا إلى جنب مع الدرع الشمسي عنصر المركبة الفضائية في التلسكوب الفضائي.
العنصران الرئيسيان الآخران من تلسكوب ويب هما وحدة الأدوات العلمية المتكاملة (ISIM) وعنصر التلسكوب البصري (OTE). والمنطقة 3 من ISIM موجودة أيضًا بداخل حافلة المركبة الفضائية؛ وتتضمن النظام الفرعي قيادة ومعالجة البيانات (ICDH) وMIRI المُبَرِّد.
حافلة المركبة الفضائية مُتصلة بعنصر التلسكوب البصري عبر تجميع البرج القابل للنشر، والذي هو أيضًا مُتصل بالدرع الشمسي.يزن هيكل الحافلة الفضائية 350 كجم (770 رطلًا)، ويجب أن يتحمل ثقل التلسكوب الفضائي الذي يزن 6200 كجم (13700 رطلًا). وهو مصنوع بشكل أساسي من مادة الجرافيت المُركَّبة. جمع في كاليفورنيا، واكتمل التجميع في سنة 2015، ثم دمج مع بقية التلسكوب الفضائي قبل إطلاقه المخطط له في 2021. يمكن لحافلة المركبة الفضائية تدوير التلسكوب بدقة توجيه تبلغ ثانية قوسية واحدة، وعزل الاهتزاز حتى 2 ملي ثانية قوسية.تقع الحافلة الفضائية على الجانب «الدافئ» المواجه للشمس وهي تعمل عند درجة حرارة تقارب الـ300 ك (27 °م؛ 80 °ف). كل شيء على الجانب المواجه للشمس يجب أن يكون قادرًا على التعامل مع الظروف الحرارية لمدار الطوق الخاص بتلسكوب جيمس ويب، والذي يوجد جانب واحد منه في ضوء الشمس بشكل مستمر بينما الجانب الآخر موجود في ظِل الدرع الشمسي للمركبة الفضائية.جانب آخر مهم من الحافلة الفضائية هو الحوسبة المركزية، وتخزين المعلومات، ومعدات الاتصالات. يوجه المعالج والبرمجيات مجموعة البيانات من وإلى الأدوات، وإلى ذاكرة الحالة الصلبة المركزية، ونظام الراديو الذي يرسل البيانات مرة أخرى إلى الأرض ويتلقّى الأوامر. يتحكم الحاسوب أيضًا في التوجيه ولحظة المركبة الفضائية، حيث يأخذ بيانات المستشعر من الجيروسكوبات ومتعقب النجوم، ويرسل الأوامر اللازمة إلى عجلات التفاعل أو الدافعات.
المدار
شكل متحرك يوضح مدار تلسكوب جيمس ويب الفضائي وهو يحوم في دائرة حول نقطة لاغرانج L2 .
تقع نقطة لاغرانج L2 على بعد 5و1 مليون كيلومتر خلف الأرض . ويحوم التلسكوب حول تلك النقطة في مدار عمودي على الخط الواصل بين L2 والأرض (شاهد الفيديو التوضيحي).
المقارنة مع تلسكوبات أخرى

مقارنة مرآة جيمس ويب مع مرآة هابل الرئيسية

سوف تكون هندسة كاليستو لتلسكوب سافير (SAFIR) خليفة لسبيتزر، والذي سيتطلب تبريدًا سلبيًا أكبر من جيمس ويب (5 كلفن).تعود الرغبة في الحصول على تلسكوب فضائي يعمل بالأشعة تحت الحمراء إلى عقود ماضية. في الولايات المتحدة، كان هناك تخطيط لمرفق تلسكوب الأشعة تحت الحمراء (Shuttle Infrared Telescope Facility) خلال تطوير مكوك الفضاء، ولقد اعترف بإمكانية علم فلك الأشعة تحت الحمراء في ذلك الوقت. وبالمقارنة مع التلسكوبات الأرضية، كانت المراصد الفضائية في حِل من امتصاص الغلاف الجوي لضوء الأشعة تحت الحمراء. وفتحت المراصد الفضائية «سماء جديدة» كاملة لعلماء الفلك.«الغلاف الجوي الرقيق فوق ارتفاع الطيران الاسمي الذي يبلغ 400 كم ليس له أي امتصاص قابل للقياس بحيث يمكن للكاشفات التي تعمل بجميع الأطوال الموجية من 5 ميكرومتر إلى 1000 ميكرومتر تحقيق حساسية إشعاعية عالية.» – إس جي مكارثي وجي دبليو أوتيو، 1978ومع ذلك، فإن تلسكوبات الأشعة تحت الحمراء لها عيب: فهي تحتاج إلى البقاء شديدة البرودة، وكلما إزداد الطول الموجي للأشعة تحت الحمراء، كلما احتاجت إلى أن تكون أكثر برودة. وإذا لم تكن، فإن الحرارة الخلفية للجهاز نفسه تطغى على أجهزة الكشف، وهو ما يجعلها عمياء بشكل فعال. ويمكن التغلب على هذه المشكلة من خلال التصميم الدقيق للمركبة الفضائية، وبشكل خاص عن طريق وضع التلسكوب في ديوار مع مادة شديدة البرودة، مثل الهيليوم السائل، وهذا يعني أن معظم التلسكوبات التي تعمل بالأشعة تحت الحمراء لها عمر محدود وقصير بسبب المُبَرِّد الخاص بها، وهو يتراوح بين بضعة أشهر وبضعة سنوات على الأكثر.

ملصق تلسكوب جيمس ويب الفضائي الرسمي
تلسكوبات وأدوات فضائية مختارة
الاسم السنة الطول الموجي
(ميكرومتر) الفتحة
(متر) التبريد
IRT 1985 1.7–118 0.15 الهيليوم
مرصد الأشعة تحت الحمراء الفضائي (ISO)
1995 2.5–240 0.60 الهيليوم
المحلل الطيفي التصويري للتلسكوب الفضائي لهابل (STIS) 1997 0.115–1.03 2.4 Passive
كاميرا قريبة من الأشعة تحت الحمراء والمطياف متعدد الأجرام لهابل (NICMOS) 1997 0.8–2.4 2.4 نيتروجين، ومُبَرِّد لاحقًا
تلسكوب سبيتزر الفضائي 2003 3–180 0.85 الهيليوم
كاميرا واسعة المجال 3 لهابل (WFC3) 2009 0.2–1.7 2.4 Passive, and thermo-electric
مرصد هيرشل الفضائي 2009 55–672 3.5 الهيليوم
تلسكوب جيمس ويب الفضائي 2021 0.6–28.5 6.5 Passive, and cryocooler (MIRI)
التاريخ
الخلفية
التطوير
الإنشاء بدأ عام 1995 واطلق في 2021/12/25
مشكلات التكلفة والجدول الزمني
الشراكة
العروض العامة
الجدل حول الاسم
المهمة
تلسكوب جيمس ويب الفضائي له أربعة أهداف رئيسية: البحث عن الضوء المنبعث من النجوم والمجرات الأولى التي تكونت في الكون بعد الانفجار العظيم.
دراسة تكون وتطور المجرات.
فهم تكون النجوم والأنظمة الكوكبية.
دراسة الأنظمة الكوكبية وأصول الحياة.
يمكن تحقيق هذه الأهداف بشكل أكثر فعالية من خلال الرصد بواسطة الضوء القريب من الأشعة تحت الحمراء بدلًا من الضوء في الجزء المرئي من الطيف. لهذا السبب لن تقيس أدوات تلسكوب جيمس ويب الضوء المرئي أو فوق البنفسجي مثل تلسكوب هابل، ولكن ستكون لديه قدرة أكبر على ممارسة علم فلك الأشعة تحت الحمراء. تلسكوب جيمس ويب سيكون حساسًا لنطاقات من الأطوال الموجية تبدأ من 0.6 (الضوء البرتقالي) إلى 28 ميكرومتر (الأشعة تحت الحمراء العميقة عند حوالي 100 ك (−173 °م؛ −280 °ف))
يمكن استخدام تلسكوب جيمس ويب لجمع معلومات حول الضوء الخافت لنجم تابي، الذي اكتُشف سنة 2015، وله بعض خصائص منحنى الضوء غير الطبيعية.
الإطلاق وطول المهمة
علم فلك الأشعة تحت الحمراء
الدعم الأرضي والعمليات
ما بعد الإطلاق
تخصيص وقت الرصد
برنامج الرصد المبكر للعلوم
برنامج الراصد العام
النتائج العلمية

أول صورة ملونة من تلسكوب جيمس ويب، تجمع مجرة SMACS J0723.3-7327.
في 12 يوليو 2022 كشف الرئيس جو بايدن عن أول صورة ملونة من تليسكوب ويب وكذلك بيانات طيفية، والذي يمثل أيضًا البداية الرسمية لعمليات ويب العلمية العامة، أيضاً أعلنت وكالة ناسا عن قائمة الملاحظات المستهدفة وهي:
سديم القاعدة
WASP-96b
سديم الحلقة الجنوبي
خماسية ستيفان
عنقود مجرات SMACS 0723، عدسة الجاذبية صورة بعيدة المدى للمجرات
====
مرصد كيك
من ويكيبيديا، الموسوعة الحرة
اذهب إلى التنقل اذهب إلى البحث
مرصد كيك

البلد الولايات المتحدة

الاحداثيات 19.8263°N 155.47441°W
الارتفاع 4145 متر
أول استخدام 24 نوفمبر 1993، و23 أكتوبر 1996
طراز المرقاب تلسكوب بصري، ومقراب عاكس، ومرصد فلكي

قطر 10 متر
دقة الزاوية 0.04 ثانية قوسية، و0.4 ثانية قوسية
منطقة التحصيل 76 متر مربع
الطول البؤري 17.5 متر
الحامل مقراب
الموقع على الشبكة الموقع الرسمي، والموقع الرسمي
تعديل مصدري - تعديل

مرصد كيك يتكون من مرصدين
مرصد دبليو. إم. كيك غالباً ما يعرف بـ مرصد كيك، (بالإنجليزية: W.
M. Keck)‏. هو عبارة عن مرصدين يقعان على ارتفاع 4.145 م على قمة ماونا كيا في هاواي. المرايا الرئيسية لكلا المرصدين يبلغ قطرها 10 متر مما يجعلهما أكبر مرصدين بصريين في العالم.
تم بنائه بعد أن منح هاورد ب. كيك رئيس مؤسسة دبليو. إم كيك مبلغ 70 مليون دولار للقيام بتصميم المرصد وإنشائه. تم بناء المرصد الأول «كيك I» في عام 1993 والثاني «كيك II» في عام 1996.
========
مسبار فضائي
من ويكيبيديا، الموسوعة الحرة
اذهب إلى التنقل اذهب إلى البحث

مسابير الفضاء النشطة في فبراير 2016.
المسبار الفضائي هو مركبة فضائية آلية بدون طاقم ولا تدور حول الأرض بل تستعمل لاستكشاف الفضاء الخارجي، حيث يتم إطلاقها في الفضاء الخارجي بهدف استكشاف واحد أو أكثر من الأجرام السماوية (كوكب، قمر، مذنب، كويكب) أو استكشاف الوسط بين الكواكبي أو الوسط بين النجمي. تتكون حمولتها من أدوات علمية من أنواع مختلفة (على غرار كاميرات متطورة، أجهزة المطياف، مقياس الطاقة الإشعاعية، ومقياس المغناطيسية...) تمكن العلماء من جمع البيانات في الموقع أو على مسافة باستعمال كاميرات ومجسات، ليتم إرسالها فيما بعد إلى الأرض. إذ كان مسبار الفضاء بصفة عامة كثيرا ما يكون قريبا من قمر اصطناعي يدور حول الأرض، فإن لمسابير الفضاء عدة خصائص تجعل منها آلات خاصة: طول المسافة بين المشغلين على الأرض والآلة (المسبار)، تفرض استقلالية كبيرة وفي الآن ذاته توفر نظام اتصالات قوي ودقيق؛
تعقيد المهام التي ينبغي للمسبار القيام بها: على سبيل المثال الهبوط على الأجرام السماوية التي تملك غلافا جويا أو قوة جاذبية منخفضة جدا، التوجيه الدقيق للأدوات صوب أهداف سريعة الحركة، جمع العينات وإجراءات التخزين الاحتياطي للبيانات في حالة الفشل؛
دقة وتعقيد الملاحة؛
العمل في ظل التعرض الأشعة الكونية؛
العمل في ظل ضعف الطاقة الشمسية المتاحة، خاصة إذا كان الهدف من إرسال المسبار هو جمع بيانات حول الكواكب الخارجية؛
تحمل درجات حرارة قصوى أثناء أداء مهمات إلى الكواكب الخارجية (خارج المجموعة الشمسية) أو تحت مدار عطارد؛
مدة البعثة التي يمكن أن تبدأ بعد مرحل العبور وتمتد إلى عشرات السنوات.
تتطلب عملية إرسال مسبار الفضاء إلى أحد الكواكب دقة عظيمة في زاوية الانطلاق من الأرض، حيث تصل دقة هذة الزاوية إلى 1 ثانية قوسية. كما تتطلب أيضا توجيه المسبار عبر المسار بدقة بالغة، يستعان في ذلك بظاهرة دوبلر وتغير مدة تقدم الإشارة. تسمح كل تلك الطرق بالإضافة إلى أخرى بتعيين مكان المسبار في الفضاء بدقة تصل إلى 1 متر بصرف النظر عن بعده عن الأرض.
يحصل المسبار على طاقته انطلاقا من مراكم يشحن الألواح الشمسية إذا كان الهدف هو القمر أو الكواكب الداخلية للمجموعة الشمسية مثل عطارد والمريخ. في حين إذا كان المسبار مصمما للإستخدام لفترة وجيزة، يتم الاستعانة عندها بالبطاريات لإمداده بالطاقة الكهربائية. أما إذا كان المسبار مصمما لإرساله إلى كواكب خارجية بعيدة تضعف فيها أشعة الشمس اللازمة لتوليد الطاقة من الألواح الشمسية يتم في هذه الحالة الاستعانة ببطاريات تعمل بالنظائر المشعة.
محتويات 1 تصميم بعثة المسبار الفضائي
2 اختيار المشروع
3 أنواع مسابير الفضاء المختلفة 3.1 مسبار التحليق فوق الأجسام السماوية
3.2 المسبار المداري
3.3 مسبار الغلاف الجوي
3.4 مسبار الإنزال
3.5 المسبار المتجول أو الروفر
3.6 بعثة العودة بالعينات إلى الأرض
3.7 المخترق
3.8 أقمار الاتصالات
3.9 العارض التكنولوجي
4 أبرز المسابير ومهامها 4.1 مسابير القمر
4.2 مسابير عطارد
4.3 مسابير الزهرة
4.4 مسابير المريخ
4.5 مسابير المشتري وزحل
4.6 مسابير أورانوس ونبتون
4.7 مسابير بلوتو
5 انظر أيضًا
6 مصادر
تصميم بعثة المسبار الفضائي
على غرار أي مشروع فضائي آخر، تنقسم عملية التطوير والتحكم التشغيلي للمسبار الفضائي إلى عدة مراحل، تكون خصائصها (الواردة والمسلم بها) شائعة لدى وكالات الفضاء المختلفة.
مراحل مختلفة من مشروع فضاء وفقا للمركز الوطني الفرنسي للدراسات الفضائية
المرحلة عنوان المرحلة الهدف الاهداف المحققة (التسليم) استعراض نهاية المرحلة الملاحظات
0 تحديد الاحتاجات تحديد الاحتياجات
البحث عن سبل تحقيقها
تقييم التكاليف والمواعيد النهائية استعراض تصميم المشروع
A الجدوي تحسين الاحتياجات
تقييم السبل تحديد الحل استعراض المتطلبات الأولية
B التحديد الأولي التحديد الأولي المسبق للمشروع تأكيد الجدوى، وجعل تعريف أولي
القيام بتحديد أولي مسبق مراجعة متطلبات النظام
ومراجعة التحديدات الأولي
C التحديد الدقيق التحديد الدقيق للمشروع صياغة دفتر تحملات لمرحلة الإنتاج مراجعة نقدية لمراحل التحديد (الأولي والدقيق)
D الإنتاج و/أو التأهيل على الأرض التصنيع وإجراء التجارب تسليم المركبة الفضائية مراجعة مدى تأهيل المركبة
القبول
E الاستعمال تحقق ملاءمة التشغيل وتشغيل الجهاز مراجعة الجاهزية التشغيلية
مراجعة ملاءمة الطيران
مراجعة التشغيل تبدأ هذه المرحلة مع إطلاق المسبار الفضائي
F التقاعد (الخروج من الخدمة) إزالته من الخدمة دون إزعاج للبيئة المحيطة نهاية عمر المشروع
اختيار المشروع
في الوقت الذي تتضاعف فيه مواضيع الدراسة بالموازاة مع التقدم العلمي، تظل بعثات استكشاف النظام الشمسي باهظة التكلفة ونادرة إلى حد ما. لذلك فإن عملية الاختيار تكون دائما صارمة وكثيرة التنظيم. تعتمد وكالات الفضاء الرئيسية حول العالم على تحديد إستراتيجية الخاصة لاستكشاف الفضاء على الوثائق التي تنتجها السلطات العلمية المتخصصة الرئيسية. في هذا السياق تعتمد وكالة ناسا في استراتيجياتها على منشور المسح العشري للعلوم الكوكبية الصادر عن مجلس البحوث الوطني الأمريكي على رأس كل عشر سنوات، في وقت كانت تمتلك فيه وكالة الفضاء الأوروبية وثيقة مماثلة أعدت خصيصا لبرنامجها العلمي «الرؤية الكونية» الذي أنشئ في سنة 2004 للمشاريع التي يتنتهي أجلها في الفترة الممتدة ما بين 2015 و2025. المركز الوطني للدراسات الفضائية من جهته يفعل نفس الشئ؛ على الرغم من توفره على ميزانية بحثية لا تسمح له بإجراء استكشاف للنظام الشمسي بشكل مستقل. في هذا الصدد، يمكن لوكالة الفضاء إطلاق دعوة للأفكار تليها دعوة أخرى لتقديم المقترحات تؤدي إلى اختيار وتطوير البعثة. ليبدأ كل ذلك في إطار ميزانية محددة مسبقا. عند ناسا بند الميزانية هذا متاحة بشكل دوري كما هو الحال في برنامجي الحدود الجديدة أو ديسكفري، من أجل السماح بتطوير البعثات خلال كل عقد على حدى. تختار وكالة الفضاء الأوروبية هي الأخرى، والتي لا تملك سوى جزء ضئيل من ميزانية ناسا، البعثات قبل وقت طويل من إطلاقها. إلا أنه في كثير من الأحيان يتم تأجيل تاريخ الإطلاق لمواجهة قيود الميزانية. تشمل الفرق التي تستجيب للمناقصات المهندسين والعلماء على حد سواء. حيث تقدم مقترحات تفصل بين الأهداف العلمية والخصائص التقنية بالإضافة إلى الجوانب المالية. يتم اختيار هذه الفرق في النهاية من قبل اللجان العلمية التي تأخذ في الاعتبار الاستراتيجية العلمية طويلة الأجل التي وضعتها الوثائق التي تنتجها السلطات الأكاديمية في بداية هذه العملية.
أنواع مسابير الفضاء المختلفةتحدد طريقة الاستكشاف المستخدمة في مسابير الفضاء بشكل أساسي استنادا للأهداف العلمية المتوخاة والقيود المفروضة على التكاليف. على سبيل المثال، إذا كانت دراسة كوكب معين هي الأولى من نوعها، يكون الهدف الأسمى هو وضع المسبار في مداره حول الكوكب لإجراء ملاحظات على الكوكب بأسره على مدى فترات طويلة من الزمن. لكن في هذه الحالة تتطلب عملية وضع المسبار في المدار إضافة أجهزة دفع تتطلب تكلفة كبيرة. لهذا السبب يتم استعراض لمحة بسيطة عن الهدف واراء البعثة بغرض الاستفادة المثلى من المسار باستعمال أدوات علمية تمكن من جمع أكبر قدر من البيانات. في الأخير، تبقي عملية اختيار طريقة الاستكشاف مرهونة بمستوى خبرة الأمة أو مجموعة الدول التي تطور مسبار الفضاء. أقل مستوى من الصعوبة هو تحلق المسبار فوق كوكب داخلي تابع للنظام الشمسي. لكن عملية انزال المسبار على الكوكب لطالما كانت تعتبر تحديا كبيرا لوكالات الفضاء بصفة خاصة ناسا، حيث ان ثلثي الرحلات التي ارسلت هذه الأخيرة في الماضي إلى هذا كوكب المريخ على سبيل المثال باءت بالفشل نتيجة لاحتراق المركبات التي كانت تحمل المسابير لدى محاولتها اختراق جو المريخ. هذا الواقع سرعان ما تغير في 6 أغسطس 2012 بعدما نجت ناسا في انزال روفر (كيوريوسيتي روفر) مستقل جزئيا على سطح كوكب المريخ، الذي يتميز بغلاف جوي وبجاذبية قوية.اعتمادا على طريقة الاستكشاف المستخدمة، يمكن ترتيب مسابير الفضاء في 9 فئات رئيسية. يمكن لبعض المسابير الفضائية الجمع بين عدة فئات في آن واحد على سبيل المثال مسابير برنامج فايكينغ (فايكينغ 1 وفايكينغ 2).
مسبار التحليق فوق الأجسام السماوية

مسبارفيغا.

نموذج لمسابير فوياجر.
يمكن تصميم مسابير الفضاء للتحليق فوق الأجسام السماوية وتصوير نظر عامة عنها بغرض دراستها. في أبسط الحالات يجب أن وضع هذه المسابير من الأرض على مسار دقيق للقيام بمهامها مع عدد قليل من التصحيحات الصغيرة أثناء العبور. أولى مسابير ما بين الكواكب على غرار مارينر 4 كانت من هذا النوع. بالرغم من كل هذا تظل الأهداف التي يمكن تحقيقها من خلال مثل هذه البعثات محدودة: وقت المراقبة هو قصير جدا نظرا للسرعة الكبيرة التي يحلق بها والتي تبلغ عدة كيلوميترات في الثانية، وغالبا ما يظهر وجه واحد فقط من الأجرام السماوية مرئيا في وقت التحليق بالإضافة إلى ظروف الإضاءة الغير مثالية لاتقاط الصور وجمع البيانات. طريقة من الملاحظة قد تكون الوحيدة التي يمكن استخدامها لأكثر الأجسام السماوية بعدا (مثل مسبار نيو هورايزونز الذي تم ارساله بهدف استكشاف كوكب بلوتو وأقماره). تستخدم هذه النوعية من المسابير أيضا في بعثات الاستطلاع المتطورة التي تهدف إلى إجراء سلسلة من الدراسات على عدة كواكب أو أقمار (مسابير فوياجر على سبيل المثال). كما أنها قد تكون هي السبيل الوحيد لدراسة الأجسام الصغيرة مثل المذنبات والكويكبات (كمهمة ستاردوست).

مسبار نيو هورايزونز.
المسبار المداري

مسبار غاليليو.

مسبار كاسيني هويجنز.
المسبار المداري هو مسبار فضاء يقوم بعد وصوله إلى هدفه (جسم سماوي) بالدوران في مدار حوله بغرض دراسته. تعتبر هذه المسابير ثاني أكبر فئة بعد فئة المسابير التي تقومون بالتحليق. لكي يتمكن مسبار الفضاء من دخول المدار، يجب عليه أن يقلل إلى حد كبير من سرعته عندما يصل إلى هدفه. يمكن أن تمثل الدفعات المستخدمة لعملية الكبح هذه جزءا كبيرا من الكتلة الكلية للآلة (عادة حوالي 50% بالنسبة لتلك المرسلة إلى المريخ). يسمح المسبار المداري باجراء ملاحظات منتظمة على السطح الكامل تقريبا الأجرام السماوية لعدة سنوات. منطقيا، إرسال المسبار المداري إلى هدف معين هي الخطوة التي تلي مباشرة إرسال مسبار التحليق البسيط. يتم اختيار مدار مسبار الفضاء وفقا للأهداف المتوخاة ولكن أيضا استنادا للقيود التي تمثلها كتلته. تختار البعثات التي لديها ميزانية مقيدة على غرار بعثة مارس إكسبريس مدارا بيضاوي الشكل أقل كفاءة ولكن أقل تكلفة في الوقود من المدار الدائري المنخفض الذي يحتفظ به بالنسبة لمعظم مدارات المريخ التابعة لوكالة ناسا.
مسبار الغلاف الجوي

مسبار الغلاف الجوي غاليليو.
مسبار الغلاف الجوي هو مسبار فضاء يعبر الغلاف الجوي لكوكب معين بغرض دراسته. مهمة هذا المسبار هي قصيرة نسبيا، تستمر عموما طوال المدة تستغرقها عملية نزول المسبار على السطح. يحتاج المسبار خلال هذه المرحلة فقط إلى كمية محدودة من الطاقة يجري سحبها من البطاريات. ينقل مسبار الغلاف الجوي عادة إلى الكوكب المراد استكشاف غلافه الجوي بواسطة سفينة أم تكون على اتصال به. تمت دراسة كوكب الزهرة على وجه الخصوص من خلال هذه الطريقة باستعمال سلسلة من المسابير السوفياتية لبرنامج فينيرا. من بين مسابير الغلاف الجوي البارزة الأخرى نجد كلا من مسبار هويجنز الذين درس الغلاف الجوي لقمر تيتان (أكبر أقمار زحل)، بالإضافة إلى مسبار الغلاف الجوي غاليليو الذي استطاع الدخول حوالي 200 كيلومتر عبر الطبقات العليا للغلاف الجوي للكوكب الغازي العملاق المشتري. سمح الغلاف الجوي السميك للغاية لكوكب الزهرة بتنفيذ بالونات برنامج فيغا السوفياتي التي يمكنها نقل البيانات لعدة عشرات من ساعات.
مسبار الإنزال

واحد من مسابير الإنزال لبرنامج سيرفيور التي هبطت على سطح القمر.
مسبار الإنزال هو نوع من المركبات الفضائية المصممة للبقاء على «قيد الحياة» بعد هبوطها على سطح كوكب أو قمر ومن ثم جمع البيانات العلمية عنه من على سطحه ونقلها إلى مقر القيادة على الأرض بشكل مباشر أو غير مباشر (عن طريق مركبة فضائية أخرى في المدار). في هذا السياق تم استكشاف كل من القمر وكوكب المريخ بشكل خاص باستخدام هذا النوع من المسابير، على سبيل المثال مسابير برنامج سيرفيور التي هبطت على سطح القمر والمسابير الإثنين لبرنامج فايكينغ بالإضافة إلى مسبار فينيكس التي انزلت كلها على سطح المريخ. في كل الحالات تظل مسألة «الهبوط السلس» هي النقطة الرئيسية التي تواجه المصممين عندما يتعلق الأمر بهذا النوع من المسابير. استخدام المظلة التي تفتح أثناء انزال المسبار على سبيل المثال من قبل هويجنز على قمر تيتان قد يكون حلا لهذه الإشكلية، لكن طريقة الإنزال هذه تتطلب وجود غلاف جوي سميك بما فيه الكفاية، وبالتالي فهي ليست مناسبة للمريخ. بالرغم من أن أسلوب الإنزال باستعمال المظلة يقلل من كتلة المسبار ويتميز بتكلفته، إلا أنه وبمقارنته مع أساليب أخرى لا يسمح هذه الإنزال بهبوط المسبار بطريقة مسيطر عليها تماما. لإنزال مسبار الفضاء على سطح الأجرام السماوية التي تفتقر للغلاف الجوي يجب استخدام محركات صاروخية بغرض التقليل التدريجي لسرعة المركبة الفضائية. تتجلى سلبيات طريقة الإنزال باستعمال محركات صاروخية كابحة في حاجتها إلى نقل كميات كبيرة من الوقود الشئ الذي يزيد من الكتلة الكلية للمسبار. بالنسبة للمريخ، ولتفادي مشكلة الوزن الزائد قامت وكالة ناسا بتطوير تقنيات هبوط خاصة بديلة: طريقة الإنزال باستعمال الوسائد الهوائية على سبيل المثال، التي جرى تنفيدها للمرة الأولى أثناء مهمة مارس باثفايندر لاستكشاف سطح المريخ. كما تم تنفيد نظام الإنزال المتطور للغاية هذا أيضا بحلول سنة 2012 على مسبار مختبر علوم المريخ.
المسبار المتجول أو الروفر

الروفر القمري السوفياتي لونوخود.

مسبار كيوريوسيتي روفر على الأرض قبل الإطلاق.
الروفر هو مسبار فضاء مصمم للتحرك فوق سطح الكواكب أو الأجسام الفضائية بغرض القيام بدراسات على الكوكب في الموقع في نقاط مختلفة ذات أهمية علمية. يمكن لهذه المسابير المتجولة حمل مختبرات صغيرة متكامل لتحليل العينات التي تم جمعها تماما كما كان الحال مع مختبر علوم المريخ الذي اصطحب معه مسبار كيوريوسيتي روفر المتجول. يحصل هذا النوع من المسابير على طاقته انطلاقا من الألواح الشمسية أو من مولد الكهرباء من الحرارة الناجمة عن الاضمحلال المشع. إذا كانت المسافة بين الروفر ومركز القيادة ليست بالمهمة جدا (القمر على سبيل المثال) يمكن في هذه الحالة التحكم في المسبار عن بعد. في حين إذا كانت هذه المسافة مهمة جدا بالنسبة لمتجولات المريخ، يكون لهذه الأخيرة استقلالية معينة في عملة تنقلهم على سطح المريخ تعتمد أساسا على برامج تحليل الأرض. لكن حركته تظل دائما بطيئة نسبيا الحركات لاتتعدي في جميع الأحوال بضع مئات الأقدام في اليوم الواحد.
بعثة العودة بالعينات إلى الأرض

نموذج للمسبار القمري السوفيتي لونا 16، أول مسبار يحط على سطح القمر ويتمكن من العودة إلى الأرض جالبا معه عينات من تربة القمر.
في هذه الحالة يكون الهدف من المهمة هو جلب عينات تم جمعها من جسم سماوي آخر (كوكب، مذنب أو كويكب) أو جسيمات بين الكواكب أو بين النجوم إلى الأرض لتحليلها. بالمقارنة مع دراسة ميدانية بواسطة أدوات روبوت مثل الروفر المريخي كيوريوسيتي، تسمح العودة بعينات التربة إلى الأرض بتحليل أكثر دقة، كما تسمح أيضا بمناولة العينات وتعديل الظروف التجريبية بالموازاة مع تقدم التكنولوجيا والمعرفة. لكن في الوقت نفسه قد ينطوي هذا النوع من المهام على صعوبات كبيرة، لعل أبرزها هو قيام المسبار بإنزال تلقائي علي جسم سماوي تنعدم فيه تقريبا الجاذبية أو على العكس من ذلك ان يكون قادرا علي الهبوط والانطلاق من على سطح جسم ذي جاذبية معتبرة، كما يجب على مسابير هذه النوعية من المهام في كل الأحوال أن تكون لها القدرة على إعادة الدخول إلى الغلاف الجوي للأرض بسرعة عالية وبدقة كبيرة. مهمة العودة بالعينات المريخية إلى الأرض، التي شكلت في سنة 2016 أهم أهداف دراسة المجموعة الشمسية، لم تتحقق بعد نظرا لأسباب مالية وتكنولوجية على سواء.
المخترق

مخترق الفضاء العميق 2.
المخترق أو المتغلغل (بالفرنسية: Pénétrateur)‏ هو عبارة عن مركبة فضائية صغيرة مصممة لاختراق أرض جسم سماوي (كوكب، قمر، كويكب أو مذنب) بسرعة عالية خاضعة لتباطؤ من عدة مئات من جي. تنتقل المعلومات التي تجمعها الأجهزة العلمية على متن المركبة بواسطة مرسل صغير إلى السفينة المدارية الأم، التي ترسلها بدورها إلى محطات على الأرض. يمكن مبدأ عمل المخترق من تجنب حمل المظلات والصواريخ اللازمة للهبوط السلس، وبالتالي يخفف إلى حد كبير من وزن الإنزال. لكنه في الآن ذاته يجب أن يكون قادرا على تحمل الأثر الذي يخلق بدوره العديد من القيود على كتلته، وهيكله وتصميم حمولته. لم تتجاوز العديد من مشاريع المسبار المخترق مرحلة الدراسة، وبحلول سنة 2013، تم تنفيد بعثتين فقط من للمسابير المخترقة لكن دون نتائج بسبب فقدان المركبة الأم.
أقمار الاتصالاتأقمار الإتصالات هي مركبات مسؤول عن نقل الاتصالات بين سطح جسم سماوي (من مكان تواجد مسبار الإنزال أو روفر) والأرض. تمتلك هذه المركبات دائما وإلى غاية اللحظة مدارات لها أهدافها العلمية الخاصة على غرار مارس أوديسي أو مارس ريكونيسانس أوربيتر. يمكن أن تندرج بعض مسابير الفضاء أحيانا ضمن عدة فئات مثل مسابير.فايكنج التي تجمع في نفس الوقت بين مسبار الإنزال والمسبار المداري.
العارض التكنولوجي
العارض التكنولوجي هو مركبة فضائية يتمثل هدفها الرئيسي في التحقق من صحة تقنية جديدة. على سبيل المثال مسبار الفضاء العميق 1 الذي كان الهدف الرئيسي منه هو التحقق من صحة إمكانية استخدام الدفع الأيوني لبعثات بين.الكواكب.
أبرز المسابير ومهامها
اقتصرت المهام الأولى لمسابير الفضاء على مهمات بسيطة إلى أهداف أقرب نوعا ما للكرة الأرضية تضمنت رحلال في اتجاه واحد لدراسة القمر والزهرة على سبيل المثال. لكنها سرعان ما تطورت إلى مهام معقدة، شملت رحلات في اتجاهين بغرض دراسة أجسام سماوية بعيد نسبيا عن الأرض والهبوط عليها والعودة ببيانات وعينات منها إلى الأرض.
انبثقت أولى مهام استكشاف الفضاء باستخدام مسابير فضاء غير مأهولة عن ما يعرف تاريخيا باسم سباق غزو الفضاء بين الاتحاد السوفيتي من جهة والولايات المتحدة الأمريكية مجهة أخرى. في كل الحالات تمكن الأمريكيون من إحراز تقدم فيما يخص إرسال بشر إلى الفضاء، أين لامست أقدامهم سطح القمر أولا قبل السوفييت. في حين تمكن السوفييت من الوصول الأول بمسابير الفضاء التابعة لهم إلى الأجرام السماوية، فكانو أول من تمكن من إنزال مركباتهم على عدد من الكواكب على غرار القمر والمريخ والزهرة.
مسابير القمر
بدأت عمليت اكتشاف الفضاء بالتوازي مع صراع الحرب الباردة بين السوفييت والأمريكيين، لينتقل صراع التفوق من الأرض إلى الفضاء الخرجي، فكان القمر هو البداية. حيث شهدهت هذه الفترة إطلاق جملة من المسابير القمرية، لعل أبرزها: لونا 1، هو مسبار فضاء يندرج ضمن برنامج لونا السوفييتي. يعرف هذا المسبار تاريخيا كأول مسبار يقترب من القمر، بعد أن كان من المبرمج هبوطه على القمر أدت إحدى الأعطال إلى تجاوز القمر على مسافة لا تتعدى 6000 كم، ليتخذ له مدارا حول الشمس.
بيونير 4، الذي يعرف في التاريخ كأول مسبار أمريكي يتحرر من جاذبية الأرض. أطلق بعد شهرين تقريبا من إطلاق السوفييت لمسبار لونا 1، حيث تمكن من إحراز إنجاز مماثل لهذا الأخير.
لونا 2، أول مسبار يصطدم بالقمر؛ وهو بذلك أول آلة من صنع بشري تتمكن من الوصول إلى القمر.
لونا 9، أول مسبار فضاء يتمكن من الهبوط سالما على سطح القمر.
لونا 16، أول مسبار فضاء يحط على سطح القمر ويعود إلى الأرض بعينات من تربة القمر بعد خمس محاولات فاشلة.
لونوخود 1، أول مسبار روفر ذاتي الحركة يهبط على سطح القمر.
مسابير عطارد
مارينر 10، هو مسبار فضائي تم إطلاقه من طرف وكالة ناسا بهدف إجراء قياسات حول بيئة وسطح كوكب عطارد وغلافه الجوي.
مسنجر، هو مسبار فضاء تابع لوكالة ناسا، تم إطلاقه بغرض القيام بعدة دراسات على عطارد (أقرب كواكب المجموعة الشمسية إلى الشمس) تشمل دراسة مكونات غلافه الجوي وتكوين تضاريسه وكذا القيام بقياس مجاله المغناطيسي. يعتبر مسنجر أول بعثة لمسبار يتم ارساله للدوران حول عطارد والقيام بقياسات علمية وإرسالها إلى الأرض.
مسابير الزهرةمارينر 2
فينيرا 4، وهو مسبار فضاء روسي يندرج ضمن مشروع فينيرا لاكتشاف كوكب الزهرة. يعرف هذا المسبار على أنه أول مسبار يهبط بنجاح على كوكب آخر.
فينيرا 7، هو مسبار سوفيتي أصبح بعد هبوطه على سطح الزهرة أول مركبة فضائية تتمكن من الهبوط بنجاح على كوكب آخر وترسل بيانات استكشافية منه إلى الأرض.
فينيرا 9
ماجلان
مسابير المريخمارينر 9 هو مسبار فضاء أرسلته ناسا بهدف استكشاف المريخ في إطار برنامج مارينر. أصبح بعد وصول إلى مدار المريخ أول قمر صناعي يتخذ مدارا حول أحد الكواكب.
مارس 3، هو مسبار فضاء يعتبر كأول مسبار يقوم الإنسان بإرساله للنزول على كوكب المريخ. لكن ولسبب غير معروف بعد 14.5 ثانية وصوله توقف إرسال المسبار.
سوجورنر هو مسبار روفر مريخي هبط بحلول 4 يوليو 1997 على سطح المريخ بمنطقة أريس فاليس. يعتبر كأول مسبار روفر ناجح على المريخ، قام باسكشاف المريخ لمدة ثلاثة أشهر بواسطة كامراته الأمامية والخلفية وأجهزة إجراء التجارب العلمية.
فايكينغ 1
فايكينغ 2
مارس باثفايندر
سبيريت وأبورتيونيتي
مارس ريكونيسانس أوربيتر
فينيكس
مختبر علوم المريخ (كيوريوستي)
مافن
إكسو مارس
مسابير المشتري وزحلبيونير 10 وبيونير 11
فوياجر 1، مسبار فضاء تابع لبرنامج فوياجر، زار في مرحلة معينة كوكبي المشتري وزحل، فكان أول مسبار يقدم صورة شاملة عن هذين الكوكبين الضخمين وأقمارهما. ليصبح فيما بعد كأول مركبة من صنع البشر تغادر المجموعة الشمسية، حيث تم تمديد مهمته لتشمل دراسة حدود المجموعة الشمسية وحزام كايبر.
فوياجر 2
غاليليو، هو مسبار فضاء تابع لوكالة ناسا، يهدف لدراسة كوكب المشتري وأقماره. استطاع هذا المسبار التغلغل داخل الغلاف الجوي للمشتري إلي عمق يبلغ حوالي 200 كيلومترا، حيث تمكن قبل أن يدمر من إرسال كم هائل من المعلومات والبيانات حول النشاط الجوي لهذا الكوكب.
كاسيني-هويجنز
جونو، هو أول مسبار فضاء لاستكشاف المشتري بدون بطارية ذرية تابع لوكالة ناسا، قامت هذه الأخيرة بارساله بحلول 5 أغسطس من سنة 2011 إلى مدار قطبي حول المشتري بغرض دراسة تركيب الكوكب وحقل جاذبيته وحقله وغلافه المغناطيسي بالإضافة إلى تسجيل بيانات تفسر تكوين الكوكب ورياحه القوية ونسبة المياه الموجودة بداخل غلافه الجوي.
مسابير أورانوس ونبتونفوياجر 2، هو ثاني مسبار تابع لبرنامج فوياجر بعد فوياجر 1، تمثلت المهمة الأساسية لهذا المسبار في زيارة عمالقة الجليد أورانوس ونبتون، والتي أنجزت بحلول 2 أكتوبر 1989. يعتبر فوياجر 2 حاليا المسبار الوحيد الذي زار عمالقة الجليد، وهو أيضا رابع مركبة فضائية من أصل خمس تركت النظام الشمسي.
مسابير بلوتو
نيو هورايزونز، هو أول مسبار فضاء سيمكن بواسطته دراسة كوكب بلوتو وأقماره، بالإضافة إلى دراسة حزام كايبر المكون من اجسام متجمدة وصخور تحيط بالمجموعة الشمسية.
===
مقراب سبيتزر الفضائي
من ويكيبيديا، الموسوعة الحرة
اذهب إلى التنقل اذهب إلى البحث
مقراب سبيتزر الفضائي

المشغل معهد كاليفورنيا للتقنية
، ومختبر الدفع النفاث

سمي باسم ليمان سبيتزر
المصنع مركز غودارد لرحلات الفضاء

تاريخ الإطلاق 25 أغسطس 2003

المكوك الحامل دلتا 2

الموقع الإلكتروني الموقع الرسمي
نصف المحور الرئيسي 1.0143 وحدة فلكية

الشذوذ 0.011323

الميلان 1.1338 درجة

الأوج 1.0258 وحدة فلكية

الحضيض 1.0028 وحدة فلكية

مرصد تشاندرا الفضائي للأشعة السينية

تعديل مصدري - تعديل
مقراب سبيتزر الفضائي هو مرصد فضائي يلتقط الأشعة تحت الحمراء، والرابع والأخير من بين المراصد العظمى التي أطلقتها ناسا إلى الفضاء. تم إطلاقه في 25 أغسطس 2003 من مركز كينيدي للفضاء في قاعدة كاب كانافيرال للقوات الجوية.
اطلقت الوكالة على المقراب اسم «سبيتزر» تكريما لذكرى ليمان سبيتزر، أحد علماء الفلك المشهورين، عالم الفلك في جامعة برنستون الذي اقترح في العام 1946 تطوير أول صاروخ مداري يطلق تلسكوبات إلى الفضاء فوق الغيوم الحاجبة لطبقات الجو العليا وقد كان سبيتزر أحد رواد الجهود الهادفة إلى اقناع الكونغرس بتخصيص أموال لإطلاق أسطول من التلسكوبات المدارية. كلف المشروع 670 مليون دولار.
ومن المسبارات التي أطلقتها ناسا من قبل وتقوم بقياس أشعة غير مرئية من الفضاء تلسكوب شاندرا الفضائي للأشعة السينية. وكل من تلك المسبارات التي تقيس الضوء غير المرئي تفصح عن خواص وظواهر للأجرام السماوية وما يحيط بها من غبار كوني لا يمكن للتلسكوبات العادية رؤيتها. فبعضها مثل تلسكوب سبيتز يقيس الاشعة تحت الحمراء وهي تتميز بأن الغبار الكوني لا يمتصها وبذلك تصل إلينا ويمكننا بذلك رؤية النجوم المختفية وراء الغبار الكوني.
توقف التلسكوب سبيتزر عن العمل في 30 يناير 2020.
محتويات 1 مهام التلسكوب سبيتزر
2 اكتشافات
3 وصلات خارجية
4 مراجع
5 اقرأ أيضا
مهام التلسكوب سبيتزريستطيع المقراب أن يسجل موجات أشعة تحت الحمراء، أو مصادر حرارية ضعيفة جدا مما يتيح لعلماء الفلك لأول مرة أن يلقوا نظرة على قلب الحقول النجمية التي تحجبها الغاز والغبار الكوني الكثيفة عن تلسكوبات التي تقيس الضوء المرئي العادية. يراقب سبيتزر الكون من مدار قريب من كوكب الأرض. والمركز العلمي المسؤول عن هذا التلسكوب وعن ربط المراكز العلمية حول العالم بالبيانات التي يتم الحصول عليها من سبيتزر، هو مركز تحليل ومعالجة البيانات تحت الحمراء IPAC في جامعة «كالتك» في كاليفورنيا التابع لناسا ويترأس إدارته عالم عربي من لبنان وهو الدكتور جورج حلو.
كانت التقديرات الأولى تشير إلى ان التلسكوب سيتوقف عن العمل في العام 2008 حيث يجري تبريده بغاز الهيليوم، لكن بسبب الاقتصاد في استخدام التلسكوب فمن المتوقع أن يظل في الخدمة حتى ربيع سنة 2009 وهي السنة العالمية لعلم الفلك.
اكتشافات
كشف المقراب عن وجود كميات هائلة من بخار الماء في منطقة تعج بنجوم حديثة الولادة، على بعد حوالي 1000 سنة ضوئية من الأرض. وقدر العلماء كمية بخار الماء الموجودة في قرص الغبار والغاز المحيط بهذه النجوم بخمسة أضعاف الماء الموجود على كوكب الأرض.
من أوائل الصور التي بعث بها تلسكوب سبيتزر صورة مجرة كانت تبدو مغبشة للتلسكوبات الأخرى. وفي صور سبيتزر يمكن رؤية حقول واسعة من النجوم في قلادة لولبية تطوق المجرة. كما قام بتصوير غبارا متوهجا اتضح من دراسته أنه من غبار الكربون. التلسكوب الجديد يظهر ان رقعة سماوية تبدو سوداء وفارغة بالتلسكوبات المخصصة لمراقبة الضوء المرئي، هي «مشتل نجوم»، أو سحابة غبار هائلة تتشكل في داخلها نجوم وأجسام فلكية أخرى.

بعض صور سبيتزر ،( الألوان اختيارية لتوضيح المكونات).
وصلات خارجيةالموقع الرسمي لسبيتزر
======
مقراب هابل الفضائي
من ويكيبيديا، الموسوعة الحرة
(بالتحويل من مرصد هابل الفضائي)
اذهب إلى التنقل اذهب إلى البحث
مَرصَدُ هَابل الفَضَائي
مرصد هابل الفضائي لحظة مُغادرته مكُوك الفضاء أتلانتيس في بعثته STS-125 وهي بعثة هابل الخامسة والأخيرة.
طبيعة المهمة مرصد فضائي
المشغل ناسا (NASA)
وكالة الفضاء الأوروبية (ESA)
معهد مراصد علوم الفضاء (STScI)
رمز التعريف الفلكي 1990-037B
رقم دليل القمر الصناعي 20580
الموقع الإلكتروني nasa.gov/hubble
hubblesite.org
spacetelescope.org
مدة المهمة 32 سنةً و4 أشهرٍ و19 يومًا قد انقضت
خصائص المركبات الفضائية
المصنع بيركن إلمر (البَصَريَّات)
لوكهيد (المركبَة الفَضَائيَّة)
وزن الإطلاق 11,110 كـغ (24,490 رطل)
الأبعاد 13.2 م × 4.2 م (43 قدم × 14 قدم)
الطاقة 2800 واط
الطاقم ؟؟؟
بداية المهمة
تاريخ الإطلاق 24 أبريل 1990 12:33:51 UTC
الصاروخ مكوك الفضاء ديسكفري (إس تي إس-31)
موقع الإطلاق مركز كينيدي للفضاء، 39B
دخول الخدمة 20 مايو 1990
نهاية المهمة
تاريخ الانحلال قُدِّر عمر المرصد 2030-2040
المتغيرات المدارية
النظام المرجعي مدار أرضي
النظام المداري مدار أرضي منخفض
نصف المحور الرئيسي 6,924 كـم (4,302 ميل)
نقطة الحضيض 551.4 كـم (342.6 ميل)
نقطة الأوج 555.6 كـم (345.2 ميل)
ميل المدار 28.5 درجة
الدور المداري 95.6 دقيقة
مدة الدورة 95.48 دقيقة
الحقبة الفلكية 27 يناير 2015، 09:27:58 توقيت عالمي منسق
المرصد الرئيسي
النوع مقراب ريتشي كريتيان العاكس
القُطر 2.4 م (7.9 قدم)
البُعد البؤري 57.6 م (189 قدم)
منطقة التجميع 4.5 م² (48 قدم مربع)
الموجات قريبة من أشعة التحت حمراء، ضوء مرئي، أشعة فوق البنفسجية
الأجهزة العلمية
NICMOS المقيَاس الطَّيفي للأجسام المُضاعفة وكاميرا الأشَعَّة القَريبَة من التَّحت حَمراء
ACS الكاميرا الاستقصائيَّة المُتقدمة
WFC3 الكاميرا وَاسعَة المجال 3
COS المحلِّل الطَّيفي للأُصولِ الكَونيَّة
STIS المحلِّل الطَّيفي لصور المقراب الفضائي
FGS حسَّاس التَّوجيه الدَّقيق

مرصد كومبتون لأشعة غاما، وتلسكوب جيمس ويب الفضائي
تعديل مصدري - تعديل
مِقْرَابُ هَابل الفَضَائي أو مَرصَدُ هَابل الفَضَائي أو تِلسكوب هابل الفضائي (بالإنجليزية: Hubble Space Telescope ويُدعى اختصاراً HST)‏ هو مرصدٌ فضائي يدُورُ حول الأرض، وقد أمدَّ الفلكيين بأوضح وأفضل رُؤية للكون على الإطلاق بعد طُول مُعاناتهم من المقاريب الأرضيَّة التي تقفُ في طريق وضوح رُؤيتها الكثير من العوائق سواء جوُّ الأرض المليء بالأتربة والغُبار أم المُؤثرات البصريَّة الخادعة لجوِّ الأرض والتي تُؤثِّر في دقَّة النتائج. سُمِّي المقراب على اسم العالم الفلكي إدوين هابل. بدأ مشرُوع بناء المقراب عام 1977 وأُطلق إلى مداره الأرضي المُنخفض خارج الغلاف الجوَّي على بُعد 593 كم فوق مستوى سطح البحر، حيثُ يُكمل مداره الدَّائري بين 96-97 دقيقة ويحلِّقُ بسرعة 28 ألف كيلومتر/ساعة.
أُرسل بواسطة مكُوك فضائي استُخدم لإطلاقه وهو مكوك ديسكفري في المهمة STS-31 في 24 أبريل عام 1990، ولا يزالُ هذا المقراب قيد التَّشغيل حتَّى الآن، هذا المرصدُ ذو بؤرة (فتحة عدسة) قدرها 2.4 م (7.9 قدم). لمرصد هابل أربعة أجهزة رئيسيَّة للرَّصد حيثُ تُصوِّرُ بالأشعة فوق البنفسجية القريبة والطَّيف المرئي والأشعَّة تَّحت الحمراء القريبة.
يقعُ مدار هذا المرصد خارج نطاق تشتيت غلاف الأرض الجوِّي للضَّوء القادم من الأجرام الكونيَّة ممّا يسمحُ بالتقاط صور عالية الوُضُوح بدون ضوء في الخلفية تقريبًا. فعلى سبيل المثال صُورة حقلُ هابل العميق هي أكثر صُورة طيف مرئي مُفصَّلة أُخذت لأَجسام الكون الأكثر بُعدًا. لقد أدَّت العديد من مُشاهدات مرصد هابل إلى تقدُّم مُفاجئ في الفيزياء الفلكيَّة مثل قانُون التَّحديد الدَّقيق لنسبة توسع الكون.
يُعد مرصدُ هابل الفضائي أحد أكبر وأَكثر المراصد الفضائيَّة تنوعًا مع عدم كونه الأول بينهم، ومعرُوف جيدًا بكونه أَداة بحث حيويَّة في علم الفلك شيَّدتهُ ناسا مع مُساهمات وكالة الفضاء الأُورُوبيَّة وقام بتشغيله معهد مراصد عُلُوم الفضاء، كما يُعدُّ واحدًا من مراصد ناسا العظيمة جنبًا إلى جنب مع مرصد كُومبتون لأشعَّة غاما ومرصد شاندرا الفضائي للأشعَّة السِّينيَّة ومقرابُ سبيتزر الفضائي.
اقتُرحت مراصد الفضاء في بداية عام 1923 وتمَّ تمويل مرصدُ هابل في سبعينيَّات القرن العشرين واقترح إطلاقه عام 1983؛ ولكن المشروع عانى من تأخيراتٍ تقنيَّة ومن مشاكل في الميزانيَّة بالإضافة إلى حدوث كارثة مكُوك الفضاء تشالنجر. حينما أُطلق مرصد هابل في عام 1990 لُوحظ بأنَّ المرآة الرَّئيسيَّة وُضعت بشكلٍ غير صحيح وهذا أثَّر على قُدُراتِ المرصد وقد أُعِيد ضبط المرصد الفضائي إلى مُستوى الجودة المطلُوب منه بعد إطلاق مهمَّة الإصلاح STS-61 لصيانة المرصد عام 1993.
هابل هو المرصد الوحيد المُصمَّمُ لتتمَّ صيانته في الفضاء من قبلِ رُوَّاد الفضاء. بين الأعوام 1993 و2002 أُطلقت أربعُ مهام لإصلاح وتطوير واستبدال أنظمة المرصد وأُلغيت المهمَّة الخامسة لأسباب السَّلامة بعد كارثة مكُوك الفضاء كُولومبيا. بكلِّ الأحوال وافق مدير ناسا مايكل غريفين بعد مُناقشاتٍ على مهمَّة صيانةٍ أخيرة انتهت عام 2009؛ ولا يزالُ المرصد قيد التَّشغيل حتَّى عام 2019، ويُتوقَّعُ استمراره في العمل حتَّى عام 2030-2040. الخَلَف العلمي لمرصد هابل هو مقرابُ جيمس ويب الفضائي والذي من المُقرَّرِ إطلاقه في مارس من عام 2021.وفي يوم الجمعة 17 يونيو 2021، كشفت وكالة ناسا تعرض التلسكوب إلى عطل مما أدى إلى توقفه بعد وجودة في الفضاء منذ 30 عاماً، وأعلنت أن سبب عطل التلسكوب هو توقف الحاسوب الذي يتحكم بأجهزته عن العمل وفشل اختبار إعادة تشغيله في اليوم التالي، ورجحت أن تكون المشكلة في وحدة ذاكرة تالفة.
محتويات 1 البداية والتصميم والهدف 1.1 بوادر المُقترحات
1.2 السعي للحصول على التمويل
1.3 البناء والهندسة
1.4 المجمع المقرابي البصري
1.5 نُظم المركبة الفضائية
1.6 الأجهزة الأولية
1.7 الدعم الأرضي
1.8 كارثة تشالنجر والتَّأخير والإطلاق
2 العيب في المرآة 2.1 أصل المشكلة
2.2 الحل
3 البعثات والأجهزة الجديدة 3.1 بعثة الخدمة 1
3.2 بعثة الخدمة 2
3.3 بعثة الخدمة 3A
3.4 بعثة الخدمة 3B
3.5 بعثة الخدمة 4
4 المشاريع الكُبرى 4.1 المجمع الكوني لدراسة خارج المجرة العميق في مجال تحت الأحمر القريب
4.2 برنامج الحقول المحدودة
5 الاستخدام العام 5.1 رصد الهواة
5.2 الاحتفال بذكرى إطلاق المرصد
6 النتائج العلمية 6.1 المشاريع الرئيسية
6.2 الاكتشافات المهمة
6.3 التَّأثير على علم الفلك
6.4 هندسة الطيران والفضاء
7 بيانات هابل 7.1 نقل البيانات إلى الأرض
7.2 الصُّور الملوَّنة
7.3 الأرشيف
7.4 التقليل من نقل البيانات
7.5 تحليل البيانات
8 الأنشطة التوعية
9 المستقبل 9.1 تعطُّل المعدات
9.2 تدهور المدار
9.3 ما بعد هابل
10 قائمة بأجهزة مقراب هابل
11 صور من مقراب هابل
12 انظر أيضًا
13 ملاحظات
14 مصادر
15 مراجع
16 وصلات خارجية
البداية والتصميم والهدف
بوادر المُقترحاتفي عام 1923 قام هيرمان أوبرث - وهو من مُؤسِّسي علم الصَّواريخ مع روبرت غودارد وقسطنطين تسيولكوفسكي- بنشر مقالة بعنوان «Die Rakete zu den Planetenräumen» (صاروخ إلى فضاء الكواكب) ذكرا فيها أنَّهُ من المُمكن إطلاق مرصد إلى المدار الأرضي في الفضاء باستخدام الصَّاروخ.يعُودُ تاريخ مرصد هابل إلى عام 1946 حينما ذكر العالم الفلكي ليمان سبيتزر في بحثه "المزايا الفلكيَّة للمراصد الفضائيَّة".
وفيه نَاقشَ اثنتين من المزايا الرئيسيَّة للمرصد الفضائي والذي من شأنه أن يكُون أكثر أهميَّة من المراصد الأرضيَّة. أولًا: ستقتصر العوامل المؤثرة على الاستبانة الزَّاويّة (أصغر جُزء مُنفصل والتي يُمكنُها تمييز الأجسام بوُضُوح) فقط على حيُود الضَّوء، بدلًا من الاضطرابات التي تحدُث في الغلاف الجوي من حركة عنيفة أو غير مُستقرة من الهواء أو الماء أو بعض السَّوائل الأُخرى، والتي تتسبَّب في جعل رؤيتنا للنُّجُوم كأنَّها تتلألأ، وهذه الظاهرة يسمِّيها عُلماء الفلك بالرُّؤية الفلكيَّة. في ذلك الوقت كانت المراصد الأرضية تقتصر على معدل استبانة يتراوح بين 0.5–1.0 ثانية قوسيَّة مُقارنة باستبانة نظرية مرهونة بالحيُود مقدارها 0.05 ثانية قوسيَّة في مرصد فلكي ذي مرآة قُطرُها 2.5 متر. ثانيًا: أن المراصد الفضائية تستطيعُ رصد ضوء الأشعَّة تَّحت الحمراء والأشعَّة فوق البنفسجيَّة التي يمتصُّها الغلاف الجوِّي بقُوَّة.
لقد كرَّس سبيتزر جُزءًا كبيرًا من حياته المهنيَّة في الدفع إلى تطوير مرصد الفضاء. في عام 1962 أوصى تقرير من الأكاديميَّة الوطنيَّة للعُلُوم في الولايات المتَّحدة بتطوير المرصد الفلكي ليكون جُزءًا من رحلات الفضاء البشريَّة، وفي عام 1965 عُيِّن سبيتزر رئيسًا للَّجنة المُكلَّفة بمهمة تحديد الأهداف العلميَّة لمرصد الفضاء الكبير.بعد الحرب العالمية الثانية بدأ مشروع المرصد الفلكي الفضائي بالظُّهُور على نطاقٍ ضيِّقٍ جدًّا، فقد استعان العلماء بالتَّطورات التي حدثت في تكنُولوجيا الصَّواريخ أثناء الحرب، وكان أول حُصُول على طيف الأشعَّة فوق البنفسجيَّة للشَّمس في عام 1946. أطلقت ناسا في عام 1962 مرصد المدار الشَّمسي Orbiting Solar Observatory ـ (OSO) من أجل الحصول على الأشعة فوق البنفسجية والأشعَّة السينيَّة وأطيَاف أشعَّة غَامَا. في عام 1962 أطلقت المملكة المتحدة مرصد المدار الشَّمسي Ariel 1 الذي كان من ضمن برنامجها الفضائي أرييل، وفي عام 1966 أطلقَت ناسا أول بعثة للمرصد الفلكي المداري (OAO)، ولكن بعد إطلاقه بثلاثة أيَّام ضعُفت بطَّاريتُه وانتهت بذلك البعثة. بعد فشل تلك المهمَّة أُرسل مرصد آخر OAO-2 والتي رُصدت منهُ الأشعَّة الفوق بنفسجيَّة الآتية من الشَّمس والمجرَّات مُنذ إطلاقه في عام 1968 إلى 1972 مُتجاوزًا بذلك العُمر الذي توقَّعهُ العلماء للمرصد بأنَّه سيعمل فقط لمدةِ سنةٍ واحدة.أظهرت بعثات المرصدين OSO و OAO الدَّور الهام الذي يُمكن أن يلعبه الرصد الفضائي في علم الفلك، ففي عام 1968 طوَّرت ناسا خُطط مُحدَّدة لمقراب عاكس قُطر مرآته 3 أمتار، عُرف مؤقتاً باسم المرصد المداري الكبير أو مرصد الفضاء الكبير؛ وكان من المُقرر إطلاقه في عام 1979. وشدَّدت هذه الخُطط على الحاجة للبعثات المأهُولة من أجل صيانة المرصد الفضائي وذلك لضمان عمله وإطالة عُمره خاصًّة وأنَّهُ مشروعٌ مُكلف وباهظ الثَّمن، والتَّطوير للخطط التقنيَّة التي تسمح لإعادة استخدام مكُوك الفضَاء سرعان ما أصبحت مُتاحة.
السعي للحصول على التمويلشجَّع نجاح OAO الحصول على إجماع وتأييد مُتزايد وقَوي داخل المجتمع الفلكي بأنَّ مرصد الفضاء الفلكي ينبغي أن يكُون هدفًا رئيسيًّا. في عام 1970 أنشأت ناسا لجنتين؛ الأولى مهمتها تخطيط الجانب الهندسي لمشروع مرصد الفضاء والثانية مهمتها تحديد الأهداف العلمية للبعثة. حالما أُنشئت هذه اللجنتين كانت أمام ناسا العقبة التالية أمام مشروعها وهو التمويل، والذي من شأنه أن يكون أكثر تكلفة من أي مرصد أرضي. قام الكونغرس الأمريكي بوضع العديد من الأسئلة المتعلقة عن جوانب الميزانية المقترحة للمرصد، وأجبر ناسا على إجراء تخفيضات بالميزانية في مراحل التخطيط والذي كان حينها يتألف من دراسات مفصلة للغاية من الأدوات والأجهزة المحتمل وضعها وتركيبها في المرصد. في عام 1974 انخفض الانفاق العام في الولايات المتحدة مما استدعى الكونغرس بأن يوقف كل التمويل الموجه لمشروع المرصد الفضائي.ردًّا على ذلك الإلغاء بُذلت جهودٌ كبيرة في كافة أنحاء البلاد لتشكيل جبهة موحدة للضغط بالتنسيق بين علماء الفلك. فقام العديد منهم بمقابلة أعضاء الكونغرس ومجلس النواب الأمريكي بشكل مباشر، كما نظِّمت حملات كبيرة لكتابة رسائل إلى الكونغرس من أجل إعادة التمويل. نشرت الأكاديمية الوطنية للعلوم تقريرًا يتحدث فيه على تأكيد الحاجة للمرصد الفلكي الفضائي، وفي النهاية وافق مجلس الشيوخ على نصف الميزانية التي وافق عليها الكونغرس قبل إلغاء التمويل.تسبب قلة التمويل في انخفاض حجم المشروع، فتحول قُطر المرآة التي كانت ستُصنع من 3 أمتار إلى 2.4 متر من أجل تخفيض التكاليف. كما رُفض مُقترح لمرصد فضائي قطر مرآته 1.5 متر، والذي كان سيكون بمثابة اختبار للأنظمة التي سيتم استخدامها على القمر الصناعي الرئيسي بسبب الميزانية؛ وبسبب ذلك تعاونت ناسا مع وكالة الفضاء الأوروبية (ESA). وافقت ESA على توفير التمويل اللازم وتزويدهم بالأدوات الأولى للجيل الأول لهذا المرصد والتي ستوضع فيه، بالإضافة إلى مصدر الطاقة التي ستشغله وهي الألواح الشمسية وسوف تُرسل وكالة الفضاء الأوروبية موظفين من عندها ليعملوا مع طاقم ناسا على هذا المرصد في الولايات المتحدة مُقابل أن تضمن ناسا للفلكيين الأوروبيين لوقت لا يقل عن 15٪ في استخدام المرصد في الرصد، وهو وقتٌ أقل من الوقت المسموح لفلكيي ناسا الذين لديهم الوقت الأكبر. في عام 1978 وافق الكونغرس على وضع التمويل النهائي وهو 36 مليون دولار، وبدأ التصميم للمرصد الكبير بشكل جدي وتحدد موعد الإطلاق ليكون في عام 1983. في عام 1983 سُمِّي المرصد باسم العالم الفلكي الأمريكي إدوين هابل، الذي قدم واحدة من أعظم الاكتشافات العلمية في القرن 20 حينما اكتشف أن الفضاء الكوني يتمدد.
البناء والهندسةحالما تمَّت الموافقة على المشروع ووصل التمويل قُسِّم العمل عليه بين العديد من المؤسسات. فقد أُعطيت المسؤولية عن تصميم وتطوير وبناء المرصد وأنظمته مركز مارشال لبعثات الفضاء بينما أُعطي مركز غودارد لرحلات الفضاء تصميم الأجهزة العلمية وتطويرها وبنائها، كما أن لديه التحكم الكامل بمركز المراقبة الأرضية لهذا المشروع. كَلف مركز مارشال شركة البصريات بيركن إلمر لتصميم وبناء تركيب المرايا ومجسات التوجيه الحسَّاسة لمرصد الفضاء. أما شركة لوكهيد لبناء الطائرات فقد كُلفت ببناء ودمج المركبة الفضائية التي سوف تحمل المرصد الفضائي.
المجمع المقرابي البصري

صورة توضح طريقة انعكاس الضوء في مقراب كاسيغرين العاكس.
يتألف نظام المجمع المقرابي البصري (Optical Telescope Assembly) ـ (OTA) من مرآتين ودعمات وفتحات للأجهزة ويحتوي أيضًا على عاكس كاسيغرين وفيه تشكل المرآتان صورًا مركزة على أكبر حقل رؤية متاح لها. عاكس كاسيغرين من صُنع ريتشي كريتيان وهي شركة مُتخصصة في صُنع مقاريب المراصد. تكمن وظيفة مقراب كاسيغرين العاكس بأن يقوم الضوء بصدم المرآة الرئيسية ليرتد بعدها عن هذه المرآة الأولية ويواجه المرآة الثانوية. ومن ثم تقوم المرآة الثانوية بتركيز الضوء عبر ثقب موجود في مركز المرآة الأولية يؤدي إلى الأجهزة العلمية للمرصد. نُظم المرآة والبصريات للمقراب يُحددون الأداء النهائي وذلك لأنها مصُممة بمواصفات معينة وصارمة. عادة ما تحتوي المراصد البصرية على مرايا صُقلت بدقة وبإحكام إلى حوالي عُشر الطول الموجي للضوء المرئي، ولكن كان من المقرر أن يُستخدم المرصد الفضائي لرصد الضوء المرئي مروراً بالأشعة فوق البنفسجية (أطوال موجية أقصر)، وأن تكون مواصفاته محدودة الحيود (تعطي أعلى قيمة استبانة للصورة)، من أجل الاستفادة الكاملة من بيئة الفضاء الخارجي. لذلك فقد كانت المرآة في حاجة إلى صقل لتصل دقتها إلى 10 نانومتر أو 1/65 من الطول الموجي للضوء الأحمر. لم يُصمَّم المجمع المقرابي البَصَري ليعطي الأداء الأمثل للأشعة تحت الحمراء في نهاية طيف الموجات الطويلة، كمثالٍ على ذلك أُبقيت المرايا عند درجات حرارة مستقرة (حتى في حال كونها دافئة عند درجة حرارة 15 °م) عن طريق أجهزة التسخين، ممّا حدَّ من أداء مرصد هابل في مجال الأشعة تحت الحمراء.

صَقل المرآة الرَّئيسيَّة لمرصدِ هَابل في مَصنَعِ بيركن إلمر. 1 مارس 1979

فنيُّون وهُم يُعاينون مرآه هابل الرئيسيَّة، 1982.

المراحل النِّهَائيَّة لصَقلِ المرآة الرَّئيسيَّة. 1990
عزمت شركة بيركن إلمر في صنعها للمرآة على استخدام تقنية متطورة للغاية مسيّرة بواسطة الحاسوب لصقل المرآة إلى الشكل المطلوب من أجل المرقاب. ومع ذلك طالبت ناسا من بيركن إلمر أن تتعاقد مع كوداك لتصنع مرآة احتياطية باستخدام تقنيات تقليدية لصقل المرآة لاحتمالية وجود عيب فيها. (كذلك إضافًة إلى المرآة الاحتياطية قامت شركة كوداك مع شركة آيتك بالتقدم بعرض للعمل في صقل المرآة الأصلية. ومن شروط العرض إلزام الشركتين بأن تتحققا من عمل الأُخرى في الصقل، من أجل الوصول إلى النتيجة المرجوة للمرآة، وهو الأمر الذي كان من شبه المؤكد في حال حدوثه أن يكشف العيب في المرآة الذي سبب المشاكل لاحقاً). مرآة كوداك الاحتياطية هي الآن معروضة بشكل دائم في متحف الطيران والفضاء الوطني بالولايات المتحدة. ومرآة آيتك التي بُنيت هي الآن مُستخدمة في مقراب طوله 2.4 متر موجود في مرصد ماغدالينا ريدج.

صورة واضحة أثناء المراحل الأولى لبناء المجمع المقرابي البصري (OTA) ويظهر فيها موظفون وهم يقيسون دعامات المجمع المقرابي البصري والحاجز الثانوي لهابل.

المرآة الاحتياطية من صُنع كوداك ويمكن رؤية هيكل الدعم الداخلي بشكل واضح وتُسمى في هذه الحالة بمرآة قرص العسل لأنها غير مُغطاة بمرآة السطح العاكس.
بدأت شركة بيركن إلمر العمل على المرآة في عام 1979. وبدأت بأن أخذت زجاجًا تمدده فائق الصغر - يُحافظ عليه عند درجة حرارة الغرفة دوماً لتجنب الانحناء (حوالي 70 درجة فهرنهايت)- من مصنع شركة كورنينغ الأمريكيَّة للزجاج. لتأمين الحصول على أدنى وزن للمرآتين، فقد تألفتا من صفيحتين علوية وسفلية، كل منهما بسماكة بوصة واحدة، وتحصران فيما بينهما شبكة أقراص سداسية الشكل شبيهة بقرص العسل. حاكت شركة بيركن إلمر الجاذبية المصغَّرة عن طريق دعم المرآة من الخلف بـ 130 قضيب رفيع طبقت جهداً متفاوت القوة. وهذا قد ضمن بأن يكون شكل المرآة النهائي صحيحًا وبالمواصفات المطلوبة. استمر صقل المرآة إلى شهر مايو 1981. ظهرت تقارير في ذلك الوقت من ناسا بسبب مشاكل مع إدارة شركة بيركن إلمر بسبب قلة الميزانية، وهذا جعل عملية الصقل بأن تتأخر عن جدولها المحدد. وبسبب قلة المال أوقفت ناسا العمل على المرآة الاحتياطية وحددت موعد الإطلاق للمرصد ليكون في أكتوبر 1984. انتهى العمل على المرآة في عام 1981. بعد ذلك غُسلت المرآة بـ 2400 غالون (9100 لتر) من الماء النقي الحار (ماء منزوع الأيونات)، ومن ثم طُليت بطلاء عاكس من الألومنيوم سماكته 65 نانومتر، وأيضًا بطبقة حامية من فلوريد المغنسيوم سماكتها 25 نانومتر.استمرت الشكوك في عدم كفاءة شركة بيركن إلمر لمشروع بهذا الأهمية والحجم، كما أنَّ النقص في الميزانية وعدم التقيد بالجدول الزمني الذي حُدِّد لهذا المشروع قد تسبب في تأخير بناء بقية المجمع المقرابي البصري، وقد وُصف التأخير بأنه "غير مستقر ويتغير في كل يوم"، وبسبب ذلك قامت ناسا بتأجيل موعد الإطلاق إلى شهر أبريل 1985. استمر عدم التقيد بالجدول الزمني من عند شركة بيركن إلمر بمُعدل شهر واحد في كل ربع سنة، وفي أحيان أُخرى وصل التأخير لمدة يوم واحد عن كل يوم عمل، عندها أُجبرت ناسا على التأجيل مرةً أُخرى ليكون في شهر مارس 1986، في ذلك الوقت ارتفعت الميزانية عن قيمتها السابقة لتصل إلى 1.175 مليار دولار.

مقراب هابل وقد تمَّ تجميعه في مصنع لوكهيد، ويظهر في الصورة طوله وحجمه بالنسبة للإنسان. التُقطت الصورة في بداية عام 1985.
نُظم المركبة الفضائيةالتَّحدي الهندسي الآخر هو المركبة الفضائية التي ستحمل على متنها مرصد هابل وأجهزته الأخرى. إذ سيتعين عليها تجاوز عقبة المرور لعدة مرات من مناطق معرضة لأشعة الشمس المباشرة إلى الظلام الآتي من ظل الأرض؛ وهذه مشكلة كبيرة ستسبب تباينات كبيرة في درجة الحرارة، في حين ينبغي على المركبة أن تكون مستقرّة بما فيه الكفاية للسماح بتوجيه المقراب الفضائي بشكل دقيق. يحافظ غطاء العزل متعدد الطبقات على استقرار درجة الحرارة للمقراب، وهو أيضًا يحيط بهيكل الألومنيوم الذي يحتوي بداخله على المقراب والأجهزة العلمية الأخرى. بداخل الهيكل هناك وظيفة أساسية للبوليمر المدعم بألياف الكربون تجعل الأجزاء العاملة في المقراب موجهة بشكل متين وثابت. لأن تركيبات الغرافيت لها القدرة على جذب جزيئات الماء من البيئة المحيطة سواء عن طريق الامتصاص أو الادمصاص، فقد كانت هناك مُخاطرة بأن تمتص دعامات البناء بخار الماء بينما المقراب في غرفة شركة لوكهيد النظيفة، والذي سيطرح بسبب فراغ الفضاء، مما سيؤدي إلى تغطية أجهزة المقراب الفضائي بالجليد. للتقليل من هذه المخاطرة، أُجريت عملية شطف بغاز النيتروجين قبل إطلاق المقراب إلى الفضاء.في حين أن العمل على المرصد وأجهزته جري بشكل أو بآخر بسهولة أكثر من بناء المجمع المقرابي البصري، إلا أن شركة لوكهيد تأخرت رغم ذلك عن الجدول الزمني، ومع حلول عام 1985 كان العمل الذي أنجزته لوكهيد للمركبة الفضائية قد زاد من حجم الميزانية إلى 30٪ ومتأخرة بثلاثة أشهر. ظهر تقرير من مركز مارشال لبعثات الفضاء عن التأخير يُذكر فيه أن لوكهيد اعتمدت على إدارة ناسا في الإشراف على عملها بدلًا من اتباع طريقتها الخاصة في إدارة العمل الذي اعتادته بنفسها.
الأجهزة الأولية
طالع أيضًا: كاميرا كوكبية واسعة المجال ومحلل غودارد الطيفي عالي الدقة ومضواء عالي السرعة وكاميرا الأجسام الخافتة والمحلل الطيفي للأجسام الخافتة

رسم متفجر ومُفصَّل للقطع والأجهزة المتكونة منه مرصد هابل الفضائي
حينما أُطلِق مرصد هابل كان يحملُ معه خمسة أجهزة علميَّة متطورة: الكاميرا الكوكبية واسعة المجال (Wide Field and Planetary Camera ) ـ (WF/PC)
محلِّل غودارد الطيفي عالي الدقة (Goddard High Resolution Spectrograph) ـ (GHRS)
مضواء عالي السرعة (High Speed Photometer) ـ (HSP)
كاميرا الأجسام الخافتة (Faint Object Camera) ـ (FOC)
المحلِّل الطَّيفي للأجسام الخافتة (Faint Object Spectrograph) ـ (FOS)
كانت الكاميرا الكوكبية واسعة المجال تُعطي صُورًا عالية الدِّقة وهذه الكاميرا كانت مُعدَّة للرصد البصري، لقد بُنيت من قِبل مختبر الدفع النفاث التابع لناسا في الولايات المتحدة، تحتوي هذه الكاميرا على مجموعة مُرشحات ضوئية يبلغ عددها 48 مرشَّح ضوئي مهمتها هي عزل الخُطُوط الطَّيفية ذات الأهميَّة الفيزيائية الفلكية. تحتوي الأجهزة على ثمانية رقائق من أجهزة اقتران الشحنات مُقسَّمة بين كاميرتين كل واحدَة منهما لديها أربع رقائق من أجهزة اقتران الشحنات مُعَدل دقتها 0.64 ميغابكسل. تُوصف أجهزة اقتران الشحنات بأنَّها دارات إلكترونية مُؤلفة من عناصر تصوير حسَّاسة للضَّوء (البيكسلات) على خلايا صغيرة موجودة معا تشبه شبكة موجودة على باب ما يتم فيها تحويل الضَّوء المجمَّع من قِبل كل بكسل إلى رقم ومن ثم تُرسل الأرقام (كل 2560000 معًا) إلى الحواسيب الأرضيَّة التي تُحوِّلها إلى صُور. لقد غطَّت الكاميرا واسعة المجال (WFC) مجالاً زاوِّياً كبيرا، وقامت بإجراء عمليات مسح واسعة للكون بينما التقطت الكاميرا الكوكبية (PC) صُورًا ذات بعد بؤري أطول وتكبير أكبر من رقائق الكاميرا واسعة المجال.محلل غودارد الطيفي عالي الدقة صمَّمَه مركز غودارد لرحلات الفضاء ليعمل في مجال الأشعة فوق البنفسجيَّة، فهذا المحلِّل يستطيع تحقيق استبانة طيفية يصل مقدارها إلى 90,000. كما يمكن رصد الأشعَّة فوق البنفسجيَّة أيضاً بواسطة كاميرا الأجسام الخافتة والمحلِّل الطَّيفي للأجسام الخافتة المُطوَّران لهذا الشأن، واللذان لهُما القدرة على تحقيق أعلى قيمة استبانة للطَّيف من أيّ جهاز آخر من أجهزة مرصد هابل. فقد استخدمت هذه الأجهزة الثلاثة كاشف كهرضوئي يعتمد على عد الفوتونات بدلًا من أجهزة اقتران الشحنات. صمَّمت وكالة الفضاء الأوروبية جهاز كاميرا الأجسام الخافتة، أما المحلل الطيفي للأجسام الخافتة فقامت جامعة كاليفورنيا بسان دييغو بالتَّعاون مع شركة مارتن ماريتا ببنائه.الجهازُ الأخير هو المضواء عالي السرعة الذي قامت بتصميمه ومن ثم بنائه جامعة ويسكونسن-ماديسون. وظيفته هي العَمَل على التقَاط الطَّيف المرئي والأشعة فوق البنفسجية الآتية من النجوم المتغيرة وكذلك من الأجسام الفلكيَّة الأُخرى المُتفاوتة السُّطُوع، والتي من المُمكن أن تصل إلى 100.000 من القياسات لكل ثانية وبمُعدل قياس ضوء فلكي دقَّته 2٪ أو أفضل.يُستخدم نظام التَّوجيه في مرصد هابل الفضائي كجهاز علمي، فهو يحتوي على حسَّاسات التَّوجيه الدَّقيق (FGS)، عددُها ثلاثة ومُهمَّة كل واحدة منها توجيه المرصد من أجل الحفاظ على الدقَّة خلال الرصد؛ كما عملت هذه الحسَّاسات على إنجاز قياسات فلكيَّة دقيقة بين النُّجُوم والحركات النسبية لها، تصل الدقة فيها إلى حدود 0.0003 ثانية قوسيَّة.
الدعم الأرضي

وجود هابل في مَدَار أرض مُنخفض يعني أنَّ العَدِيد من الأهدَاف والأجسَام تكون مرئيَّة في أقل من نِصف الوقت المُنقَضِي للمَدَار بسبب حَجب الأرض لرُؤية الأهداف والأجسام الأُخرى في النصف الأول من كلِّ مَدَار.

مركز التَّحكم بمرصد هابل الفضائي في مركز غودارد لرحلات الفضاء، 1999
معهد مراصد علوم الفضاء (STScI) هو المسؤول عن العَمَليات العلميَّة للمرصد مثل نَقِل البيَانات التي رصدها إلى عُلماء الفلك، كما يقومُ العاملون في STScI باستخدام المقراب ومراقبة ومعايرة الأجهزة العلميَّة إلى جانِب تشغيل الأرشيف والعمل على التوعية العامة. بينما الذي يقومُ بتشغيله هو رابطة الجامعات لأبحاث علم الفلك في جامعة جونز هوبكينز بمدينة بالتيمور الأمريكية. هذه الجامعة هي واحدة من بين 39 جامعة أمريكية وسبع فروع لجامعات دُوليَّة تابعة لها والَّتي تُشكِّل جميعها مُجتمعة رابطة واحدة للقيام بأبحاث علم الفلك، وقد أُنشئت هذه الرابطة في عام 1981 بعد صراع طويل على السُّلطة بين ناسا والمنظَّمات العلميَّة الواسعة. لقد أرادت ناسا إبقاء العمل ضمن مُنظَّمتها بينما أراد العُلماء أن يكون في مؤسسة تعليميَّة.
في عام 1984 أُنشئ مرفق التنسيق الأوروبي لرصد الفضاء في غارشينغ باي مونشن بالقُرب من مدينة ميونخ، وكان الهدف منه هو تقديم دعم مُماثل لعُلماء الفلك الأوروبيين؛ وبقي هكذا إلى عام 2011 حينما نُقلت هذه الأنشطة إلى مركز علم الفلك الفضائي الأوروبي.
يقعُ على عاتق رابطة الجامعات للأبحاث في علم الفلك مهمة مُعقَّدة وهي جدولة رصد مرصد الفضاء. إذ يكونُ ارتفاع مَدَار هابل في الغِلاف الجوِّي العلوي حوالي 547 كم (340 ميل) وبزواية ميل 28.5°. يتغيَّر موقعُه ومدارُه مع مرور الوقت بطريقة غير معرُوفة لا يُمكن التَّنبُّؤ بها بشكلٍ دقيق. كما أن كثافة الغلاف الجوي العلوي تختلف بسبب عوامل كثيرة، وهذا يعني أنَّ توقُّع موقع هابل في فترة زمنية من سِّتة أسابيع قادمة سيصاحبها خطأ تقدير بنسبة تصل إلى 4000 كم (2500 ميل) عن موقعه الصَّحيح. تُوضعُ جداول المراقبة عادة في غضون عدة أيام فقط مُقدمًا، لأنَّه إن طالت المُهلة فإنَّ ذلك يعني أنَّ هُناك فُرصة كبيرة في أنَّ الهدف المُراد رُؤيته سيكون غير قابلٍ للرَّصد في الوقت الذي كان من المقرَّر أن يتم ملاحظته.الدَّعم الهندسي لمرصد هابل تقدمه وكالة ناسا للفضاء في مركز غودارد لرحلات الفضاء بغرينبيلت وهُو يقع على بُعد 48 كم (30 ميل) شمال معهد مراصد عُلُوم الفضاء. يعملُ مرصد هابل في الرصد لمدة 24 ساعة في اليوم عن طريق فِرق وحَدَات التَّحكم الأربعة ويُسمَّون "بفريق عمليات رحلات هابل".
كارثة تشالنجر والتَّأخير والإطلاق
المقالة الرئيسة: كارثة مكوك الفضاء تشالنجر

مرصدُ هَابِل وهو ينفصلُ عن مكُوك الفَضَاء ديسكفري لأول مرَّة إلى مداره في الفضاء في عام 1990.

STS-31 هي المُهَمَّة الخَامِسَة والثَّلاثين من مهمَّات وكَالة الفَضَاء الأمريكيَّة وفي هذه المهمَّة يَقُومُ مَكُوك الفَضَاء ديسكفري بحمل مرصد هَابل الفَضَائي إلى المدار. 24 أبريل 1990..
في بداية عام 1986 كانت احتمالية إطلاق مرصد هَابل في شهر أكتوبر ممكنة؛ إلا أن كارثة انفجار مكوك الفَضَاء تشالنجر في 28 يناير 1986 بعد ثلاثة وسبعون ثانية فقط من إقلاعه، والتي أودت بحياة جميع طاقم المكوك والبالغ عددهم سبعة أشخاص، أجبرت ناسا على التَّوقُف وتأجيل موعد الإطلاق لعدَّة سنوات. نُقلت الأجزاء التي تمَّ الانتهاء من تصنيعها إلى مخزن نظيف يعمل ويُطهَّر بغاز النيترُوجين إلى أن يُعلن عن موعد إطلاقٍ جديد للمرصد. بسبب هذه الكارثة ازدادت تكاليف المشرُوع لتصل إلى 6 ملايين دُولار شهرياً، ممَّا جعل التَّكاليف الإجمالية لهذا المشرُوع تصل لمستوى أعلى من ذي قبل. سمح هذا التَّأخير للمهندسِين بإجراء اختباراتٍ واسعة النِّطاق مثل تطوير البطَّاريَّات الشَّمسية، كما أدخلوا تحسينات على الأجهزة الأُخرى كذلك. علاوةً على ذلك، فلم يكُن مركز التَّحكُّم الأرضي لمرصد هابل جاهزًا بعد في 1986، وهُي نفس السَّنة التي تقرَّر فيها إطلاق المرصد، وبالكاد جهز عند موعد الإطلاق في عام 1990.في عام 1988 استؤنفت رحلات المكُوك الفضائية وتحدَّد موعد إطلاق جديد ليكُون في عام 1990. في 24 أبريل 1990 انطلقت بعثة STS-31 وهي بعثة نقل مرصد هابل الفضائي عن طريق مكوك الفضاء ديسكفري إلى المدار الذي حُدِّد له.بلغت تقديرات تكلفة المشرُوع الأوَّلية 400 مليون دُولار؛ ولكنَّ بناء هذا المرصد قد كلَّف فعلياً 4.7 مليار دُولار، مُتجاوزًا ميزانيته السَّابقة بأضعافٍ كثيرة. تشير التقديرات بشكل مستمر أنَّ تكاليف مشرُوع مرصد هابل الفضائي قد ارتفعت بأضعافٍ أكثر من ذلك لتصل التَّكلفة التَّقريبيَّة إلى 10 مليارات دُولار في عام 2010.
العيب في المرآةبعد أسابيع من إطلاقه، لاحظ العُلماء أَنَّ الصُّور التي يُرسلُها المرصد ليست بتلك الجودة على الرُّغم من وُضُوحها، وهذه المُشكلة قد أشارت إلى وُجُود عيب في النِّظام البَصَري. على الرغم من أنَّ الصُّور الأُولى بدت أَكثر وُضوحًا من تلك التي تلتقطُها المراصد الأَرضيَّة، إلا أن هابل فشل في التقاط صُور ذات جودة عالية وتركيز واضح، عكس ما كان ينتظره عُلماء الفلك. توزَّعت الصُّور المتلقطة لمصادر نقطية على نصف قُطرٍ أكبر من ثانية قَوسيَّة واحدة، بدلًا من دالة التوزيع النقطي التي تركز الصورة ضمن دائرة نصف قطرها 0.1 ثانية قوسيَّة، وهذا هُو ما كان مُحدَّدًا في معايير تصميم المرصد.
0:39
فيديو ثلاثي الأبعَاد لمِقرَاب هَابل وهو يدُور في الفضاء
أظهرت تحاليل الصُّور الخاطئة أَنَّ سببُ المُشكلة هُو وُجُود عيب في صقل المرآة الأوَّليَّة للمقراب؛ وذلك على الرغم من أنَّها كانت قد صُنعت وصُقلت بدقَّة بالغة، إلا أن الخلل الانحرافي بنحو 10 نانُومتر ومقْياسُ مجال رُؤية مُسطَّح للغاية بنحو 2200 نانُومتر (2.2 ميكرومتر)، كان كارثيًّا بالشكل الكافي لحدوث زيغ كروي، الأمر الذي تسبَّب في جعل الضَّوء المُنعكس عن حافَّة المرآة يُركِّز على نُقطةٍ مُختلفةٍ عن مركز المرآة.أثَّر عيب المرآة على الرصد العلمي، فرغم أن مركز دالة التوزيع النقطي الزائغ كان ظاهراً بما فيه الكفاية ليسمح برصد عالي الدِّقَّة للأَجسام اللَّامعة، وأن التَّحليل الطَّيفي للمصادر النقطية قد تأثر بهذا الخلل بفُقدان الحساسية فقط؛ إلا أن فُقدان الضَّوء إلى الهالة غير المركزة قد تسبَّب في التقليل من قُدرة المقراب على رصد الأجسام الباهتة على نحوٍ كبير أو على القيام بتصويرٍ مرتفع التبايُن. وهذا يعني تقريبًا أن جميعُ البرامج والأَجهزة المُتخصِّصة الكونية قد تعذَّر عملها بشكلٍ أساسي، لأَنَّ وظيفتُها كانت مُرتبطة بمُراقبة الأَجسام الباهتة، والتي كانت ذات بُعد استثنائي. بسبب هذا العيب أصبحت ناسا ومرصد هابل أُضحُوكةً بين النَّاس، إلى درجة وصفه بأنَّهُ فيل أبيض. وكمثال على ذلك، في عام 1991 صُور مرصد هابل الفضائي في الفيلم الكُوميدي (The Naked Gun 2½: The Smell of Fear)، مع سفينة لوسيتينيا وسفينة زيبلين 129 هيندينبيرغ الهوائيَّة الألمانية وسيَّارة فُورد إدسل؛ وجميعُ هذه الأشياء اشتهرت بفشلها. ومع ذلك فإنَّه في السَّنوات الثَّلاثة الأُولى من مُهمَّة مرصد هابل وقبل التَّصحيحات البصريَّة رصد هابل أعدادًا كبيرة من الرصد العلمي لأَجسام مُختلفة أقل أهمية في الفضاء والَّتي لم تتأثر بوُجُود الانحراف الكروي في مرآة هابل. كان هذا الخلل في المرآة واضحاً ومتكرراً، بشكل تمكَّن فيه عُلماء الفلك من التَّعويض الجُزئي للانحراف عن طريق استخدام تقنيَّات مُعالجة الصُّور المُتطوِّرة مثْل إزالة الالتفاف. استغرق وُجُود هذا الانحراف 3 سنوات قبل أن تُقرَّر وكالة ناسا إرسال بعثة لإصلاحه في الثاني من شهر ديسمبر عام 1993.
أصل المشكلة

صُورة مُستخرجة من الكاميرا الكوكبيَّة واسعة المجال (WF/PC) يظهرُ فيها أنَّ الضَّوء الآتي من النَّجمة قد انتشر على مدى واسع بدلًا من أن يرتكز على مساحة بكسل أقلِّ من ذلك.
تأسَّست لجنة للتحقيق في أصل المشكلة برئاسة ليو ألين مُدير مختبر الدفع النفاث. وجدت اللَّجنة أنَّ المصحِّح الصفري، وهو جهازٌ بصري يُستخدم في اختبار شكل المرايا الكبيرة غير الكرويَّة، قد جُمع بشكلٍ غير صحيح، فقد كانت إحدى العَدسَات خارج موقعها بمقدار 1.3 ملم.قامت شركة بيركن إلمر باستخدام مُصحِّح صفري تقليدي خلال عمليَّة الصَّقل والتَّلميع الأوَّلي للمرآة، ومع ذلك فقد كانت الخُطوة النِّهائيَّة هي كشف وحساب المرآة بعد الصَّقل. قام العاملون في الشَّركة باستخدام مُصحِّح صفري مصنُوع على حسب طلبهم والذي تميَّز تصميمُه بالصَّرامة في حد السماح. لقد أَدَّى التَّجميع غير الصحيح للجهاز في جعل المرآة مصقُولة بدقَّة مُتناهية ولكن بشكلٍ خاطئ. كان من الممكن تدارك هذه المُشكلة قبل إطلاق المرصد لأنَّهُ وبسبب مشاكل تقنيَّة احتاجت بعض الاختبارات التي أُجريت للمقراب أن تستخدم مصحَّحين اثنين من المُصحِّحات الصفريَّة. أظهرت تلك الاختبارات عن وُجُود مُشكلة الزَّيغ أو الانحراف الكروي وأُرسلت النَّتيجة للمسؤولين ولكن تلك التَّقارير لم تُعطى أيَّة أَهميَّة نظرًا لاعتبار المُصحِّح الصفري المصمَّم أكثر دقة، لذا تمَّ تجاهُل نتيجة تلك الاختبارات دُون أيِّ اهتمام.بسبب ذلك العيب في المرآة ألقت اللَّجنة باللَّوم على شركة بيركن إلمر بسبب قُصُورها لعدم اهتمامها بنتائج الاختبارات التي أجرتها. كان التَّوتُّر في العلاقات بين وكالة الفضاء الأمريكية ناسا وشركة بيركن إلمر للبصريَّات قد زاد أثناء بناء المقراب بسبب عدم تقيُّد الشركة بالجدول الزَّمني وزيادة التَّكاليف. وقد علمت ناسا أنَّ بيركن إلمر لم تقُم بالمراجعة أو الإشراف التَّام أثناء بناء المرآة بشكل ملائم، ولم تضع أفضل عُلماء البصريَّات لديها للعمل في هذا المشرُوع الكبير كما كان مُتَّفقاً عليه، وعلى وجه الخُصُوص لم تُشرك بيركن إلمر مُصمِّمي البصريَّات الذين لديها أثناء بناء المرآة ولا حتَّى عند التَّحقُق منها. في حين ألقت ناسا باللَّوم على إدارة بيركن إلمر بسبب فشلها في التَّحقُّق عن المرآة فقد أنتُقدت ناسا هي الأُخرى بسبب عدم التقاط القُصُور في العمل وأيضًا على عدم مُراقبة الجودة واعتمادها الكُّلِّي على نتائج جهاز واحد فقط.
الحل

المجرَّة اللَّولبيَّة M100، صورة التقطها مرصد هابل وهنا مُقارنَة لدقَّة الصُّورة قبل وبعد تَصحيح البصريَّات.
صممت مهمة المقراب على أن تتضمن بعثات للصيانة والخدمات المتعلقة، مما جعل عُلماء الفلك يبحثون عن حلول محتملة لمشكلة عيب المرآة، والتي من الممكن تطبيقها في بعثة الصيانة الأولى والمقرَّرة في عام 1993.
كانت شركة كوداك قد صنعت المرآة الاحتياطيَّة لمرصد هابل، إلا أنَّهُ من المُستحيل استبدال المرآة في مداره في الفضاء؛ كما سيكون إرجاعِ المقراب إلى الأرض لتجديد المرآة ومن ثم عودته للفضاء أمراً مُكلفاً للغاية وقد يستغرقُ وقتًا طويلًا. بدلًا من استبدال المرآة بأكملها تم تصميم مُعدَّات بصريَّة جديدة لها نفس درجة الانحراف الكروي ولكن بشكلٍ مُعاكس للانحراف الموجُود في مرآة هابل لتقوم دور "النَظَّارات" من أجل تصليح الانحراف الكروي.كانت الخُطوة الأولى هي وضع توصيفٍ دقيق للخطأ الموجُود في المرآة الرئيسيَّة. قام علماء الفلك بالعمل على ذلك عن طريق الرُّجُوع إلى الصُّور السابقة التي التقطها مقراب هابل، ومنها استطاعُوا تحديد الثابت المخروطي للمرآة، إذ صُنعت بـ −1.01390±0.0002 بدلًا من −1.00230 وهو الرَّقم الذي كان يجبُ أن تكُون عليه. وقد استنتج نفس الرقم أثناء تحليل الُمصحِّح الصفري التَّابع لشركة بيركن إلمر والذي استُخدم في حساب الثابت المخروطي للمرآة أثناء صُنعها، وكذلك ظهر نفس الرقم من تحليل بيانات التَّداخُل الموجي التي تم الحُصُول عليها خلال تجارب المرآة.

البدِيل التَّصحيحي البَصَري والمحوَري (COSTAR) في متحف الطيران والفضاء الوطني.
بسبب طبيعة التَّصميم المُختلفة للأدوات في مرصد هابل فقد تطلَّب تصميم مجمُوعتين مُختلفتين من المصحِّحات البصريَّة. صُنعت الكاميرا الكوكبيَّة واسعة المجال 2 من أجل استبدال الكاميرا الكوكبيَّة واسعة المجال (WF/PC) متضمِّنة مرايا مُتتابعة تعمل على توجيه الضَّوء بشكلٍ مُباشر على شرائح أجهزة اقتران الشُّحنات الأربعة المُنفصلة لتصحيح كاميرتي المقراب. لذا فإنَّ وضع عيب انحراف مُعاكس في أسطُح المرآة قد يُلغي تمامًا الانحراف من على السَّطح الرئيسي ومع ذلك فإنَّ الأَدوات الأُخرى تفتقر إلى وُجود أسطُح مُتوسِّطة يُمكن من خلالها أن تعبُر منها، وبسبب عدم وُجُود ذلك فقد تطلَّب الأمر صُنع جهاز تصحيح خارجي لتلك الأَدوات.صُمِّم البديل التَّصحيحي البصري والمحوري (Corrective Optics Space Telescope Axial Replacement) لتصحيح الانحراف الكروي للضَّوء السَّاقط على كاميرا الأجسام الخافتة (FOC) والمحلِّل الطَّيفي للأجسام الخافتة (FOS) ومُحلِّل غُودارد الطَّيفي عالي الدِّقَّة (GHRS). يتألَّف البديل التَّصحيحي من مرآتين على قاعدةٍ أساسيَّة واحدة موضوعتين في طريق مسار الضَّوء لتصحيح الانحراف الكروي. كان يجب إزالة إحدى الأجهزة التي كانت موجودة في المرصد من أجل إتاحة المجال لوضع البديل التَّصحيحي البصري والمحوري (COSTAR) ولم يكن لدى روَّاد الفضاء سوى أن يُضحُّوا بالمضواء عالي السُّرعة في سبيل تعديل الانحراف. في عام 2002 جميع الأجهزة المتعلِّقَة بـ (COSTAR) استُبدلت بأجهزة أُخرى مُتطوِّرة بحيث أنَّ لديها عدسات تصحيحيَّة خاصَّة بها. أُزيل البديل التَّصحيحي البصري والمحوري وأُعيد في عام 2009 إلى الأرض؛ وهو الآن معرُوض في متحف الطيران والفضاء الوطني في العاصمة واشنطن. المنطقة التي كانت تحتوي على البديل التَّصحيحي في مقراب هابل أصبحت الآن تحتوي على جهاز المحلِّل الطَّيفي للأُصُول الكونيَّة (COS).
البعثات والأجهزة الجديدة


Canadarm 1 (على اليمين) خلال مُهمَّته الفَضَائية (STS-72)
صُمَّم مرصد هابل لاستيعاب الخدمات العامَّة والمعدَّات المتطوِّرة التي ستُوضع فيه. فقد أُطلقت بعثات الخدمات الخمسة (1، 2، 3B ،3A و 4) لأوَّل مرَّة عن طريق وكالة الفضاء ناسا باستخدام مكُوك فضائي في ديسمبر 1993 بينما كانت آخر بعثاتها في مايو 2009. كانت بعثات الخدمات المُرسلة لهابل عن طريق مكوك الفضاء إنديفور حسَّاسة للغاية، فقد بدأت عمليَّات الإصلاح بمُناورات فضائية من أجل استرجاع المرصد عن طريق ذراع مكُوك التَّحكُّم عن بُعد Shuttle Remote Manipulator System ـ (SRMS)، يُعرف أيضًا بمُسمَّى آخر Canadarm أو Canadarm 1 لأنه يُشبه الذراع. لمُدَّةٍ تتراوح بين 4-5 أيَّام قام الرُّواد بعمليات الإصلاح الضَّرُوريَّة واستبدال الُمعدَّات الموجُودة فيه بمُعدَّات مُتطوِّرة وجديدة من أجل رفع مُستوى المقراب الفضائي بالإضافة إلى ذلك فقد قاموا بوضع أدواتٍ جديدة له. بعد الانتهاء من المهمَّة يوضع المرصد في مدارٍ فضائي أعلى من مداره السابق لتجنُّب التَّدهوُر المداري الذي قد يحدُث من مُقاومة المائع الجوِّي.
بعثة الخدمة 1
طالع أيضًا: إس تي إس-61

رائدا الفضَاء موسغريف وهوفمان وهُما يضَعَانِ البَدِيل التَّصحِيحِي البَصَري خِلال البِعثَة الأُولى.
بعد اكتشاف مُشكلة الانحراف الكروي في المرآة احتلَّت بعثة الإصلاح الأُولى للمقراب أهمية كبيرة حيثُ قام رُوَّاد الفضاء بعملٍ كبير لتثبيت المصحِّحات البصريَّة. لقد دُرِّب سبعة من رُوَّاد الفضاء لهذه البعثة على مئة أداة مُتخصِّصة في الأَرض قبل الانطلاق من أجل إصلاح المقراب في المدار الخارجي.

ثلاثة من روَّاد الفضاء وهُم يتَدرَّبُون على إصلاِح الكَامِيرا الكَوكَبيَّة واسِعَة المجَال بنسَخةٍ شَبيهةٍ لمرصَدِ هابل داخِل حَوضٍ من المَاء. 5 مايو 1993
في ديسمبر 1993 أُطلق مكوك الفضاء إنديفُور حاملًا معهُ سبعة من روَّاد الفضاء في البعثة الأولى، وسُميت ببعثة الخدمة 1 (SM1) للقيام بعمليَّة الإصلاح،
التي استمرَّت مع إضافة المُعدَّات الجديدة لأكثر من عشرةِ أيَّام.
استُبدل المضواء عالي السُّرعة (HSP) بالبديل التَّصحيحي البصري والمحوري (COSTAR) كما استُبدلت الكاميرا الكوكبيَّة واسعة المجال (WFPC) بالكاميرا الكوكبيَّة واسعة المجال 2 (WFPC2) التي احتوت على نظام تصحيحي بصري داخلي. استُبدل كذلك لوحين من ألواح الخلايا الشَّمسيَّة التي كانت على شكل أنابيب زرقاء مع النواقل الإلكترونيَّة، ويمتلكُ كل لوح غطاء من الخلايا الشَّمسيَّة التي تُحوِّل طاقة الشَّمس إلى كهرباء بقُدرة 2800 واط. طول اللَّوحان 8×40 قدم وقد صُمَّم هذان اللوحان بحيث يُمكن طيِّهما من قِبلِ روَّاد الفضاء أثناء العمل عليه واستُبدلت المداور الأربعة وتتميَّز المداور بأنَّها أدوات لتحديد الاتِّجاه. كذلك تم تغيير وحدتين كهربائيتين، بالإضافة إلى مكونات كهربائية أخرى ومقياسَي مغناطيسية. إضافًة إلى كل تلك الأشياء فقد رُقِّيَ الحاسُوبين الموجودين على متن المقراب بمُعالجات مُساعدة (Coprocessor). وهكذا أصبح المقراب أقوى من ذي قبل. في 9 ديسمبر من نفس العام انتهى رُوَّاد الفضاء من مهمَّتهم.أعلنت ناسا في 13 يناير 1994 عن نجاح بعثتها، وكانت أُولى الصُّور المُرسلة أكثر وضُوحًا ودقَّة من ذي قبل.
كانت هذه البعثة في ذلك الوقت من أكثر البعثات تعقيدًا بسبب النشاط خارج المركبة الفضائية، والذي أجري خمس مرَّات على فترات مطولة للقيام بإصلاحات المرصد في المدار الجوِّي للأرض. كان للنَّجاح الكبير للبعثة إيجابياته لوكالة الفضاء الأمريكية ورُوَّادها مع تطويره ليُصبح أقوى ممَّا كان عليه.

مقراب هابل كما يُرى من مكُوك ديسكفري بعد ثوانٍ من بدءِ مُهِمَّتِه، فبراير 1997

رائدا الفضاء ستيفن سميث وجون إم جرونسفيلد وهُما يَستَبدِلان الجيرُوسكُوبات في بعثَةِ الخِدمَة الثَّالثَة-أ SM3A

رائدا الفضَاء جيمس نيومان ومايكل ماسيمينو وهما يُزيلان كاميرا الأجسام الخافتة لوضع الكاميرا الاستقصائيَّة المُتقدمة بدلًا منها. 7 مارس 2002.
بعثة الخدمة 2
طالع أيضًا: إس تي إس-82
انطلقت البعثةُ الثَّانية في فبراير 1997 على متن مكُوك الفضاء ديسكفري لاستبدال كُلًّا من: محلِّل غُودارد الطَّيفي عالي الدِّقَّة (GHRS)، المُحلِّل الطَّيفي للأجسام الخافتة (FOS) حيث وضع مكانهما المحلل الطيفي التصويري للمقراب الفضائي (STIS) وكاميرا المجال القريب من تحت الأحمر والمطياف متعدد الأجسام (NICMOS)، بالإضافة إلى استبدال مسجِّلات علمية وهندسيَّة بمسجِّل الحالة الصلبة، كما أُصلح العازل الحراري. يحتوي (NICMOS) على مشتت حراري مصنُوع من النيتروجين الصلب للحدِّ من الضوضاء الحراريَّة، ولكن بعد فترة وجيزة من وضعه ظهر تمدُّدً حراري غير مُتوقَّع في جزءٍ من المُشتِّت الحراري ممَّا تسبَّب في مُلامسة الحاجز البصري، وقد أدَّى ذلك إلى زيادة درجة الحرارة للجهاز وتقليل العُمر المُتوقَّع لهذا الجهاز من 4.5 سنوات إلى سنتين.
بعثة الخدمة 3A
طالع أيضًا: إس تي إس-103
انطلقت البعثة الثَّالثة في ديسمبر 1999 على متن مكُوك الفضاء ديسكفري، وقد قُسَّمت هذه البعثة إلى بعثتين هما 3B و3A بسبب تعطُّل ثلاثة من الجيروسكوبات الستَّة التي كانت على المرصد، بينما تعطَّل الجيروسكوب الرَّابع قبل الانطلاق للبعثة الثالثة ببضعة أسابيع، وهذا العُطل قد جعل المقراب غير قادرٍ على القيام بدوره في الرصد العلمي. في هذه البعثة تمَّ تغيير جميع الجيروسكوبات الستَّة واستُبدلت بحسَّاسات التَّوجيه الدَّقيق وثُبِّت في الحاسُوب مُعدَّات تحسين للتحكم في التيار الكهربائي Voltage Improvement Kit ـ (VIK) لمنع البطَّارية من أن تُشحن بشكلٍ زائدٍ عن حاجتها. بالإضافة إلى ذلك فقد استُبدلت في هذه البعثة أغطية العزل الحراري.استُبدل الحاسُوب الفضائي DF-224 بحاسوبٍ جديد هو أسرع في عمله بعشرين مرَّة عن السَّابق ويحتوي على ذاكرةٍ هي ستُّ مرَّات أكبرُ ممَّا كانت عليه. زاد كل ذلك من إنتاجيَّة القيام بالمزيد من الأوامر المُرسلة من الأرض إلى المركبة الفضائيَّة، من خلال السَّماح باستخدام لُغات برمجيَّة حديثة وهذا الشَّيء قد وفَّر الوقت والمال.
بعثة الخدمة 3B
طالع أيضًا: إس تي إس-109
انطلقت بعثة الخدمة 3B عن طريق مكُوك الفضاء كُولُومبيا في مارس 2002. وُضعت في هذه البعثة أجهزة جديدة للمقراب. استُبدلت كاميرا الأجسام الخافتة (FOC) والتي كانت آخر الأجهزة الأوَّليَّة الموجودة مُنذُ البداية على المقراب باستثناء حسَّاسات التَّوجيه الدَّقيق) بالكاميرا الاستقصائيَّة المُتقدِّمة Advanced Camera for Surveys ـ (ACS) وكان هذا الجهاز هُو أوَّل الأجهزة العلميَّة التي تمَّ وضعُها مُنذُ عام 1997. بسبب وضعه لم يعُد لمُصحّح البديل البصري أيَّةُ أهميَّة بعد ذلك حيثُ أنَّ جميع الأجهزة الموجُودة فيه قد احتوت بداخلها على مُصحِّحات للانحراف الكروي الموجُود في المرآة الرَّئيسيَّة. طُوِّرت في هذه المهمَّة كاميرا المجال القريب من تحت الأحمر والمطياف متعدد الأجسام (NICMOS) وذلك بإضافة مُبرِّد مُغلق الدورة Closed Cycle Cooler . استبدلت الألواح الشَّمسيَّة للمرَّة الثانية في هذه البعثة مُشكِّلة بذلك زيادة في طاقة المقراب بنسبة 30٪.
بعثة الخدمة 4
طالع أيضًا: إس تي إس-125

مَرصَدُ هابل خِلالَ بعثة الخِدمَة الرَّابِعَة (SM4).

رائد الفضاء أندرو فيوستل وهو يُزيل البديل التصحيحي البصري والمحوري من مقراب هابل لإضافة المحلل الطيفي للأصول الكونية بدلًا منه، 2009.

بطارية مقراب هابل وهي مفتوحة ولا تحتوي على غطاء، هذه البطارية تعمل بالنيكل والهيدروجين
كان من المُقرَّر انطلاق البعثة في فبراير 2005، ولكن أدى وقوع كارثة مكوك الفضاء كولومبيا الذي تحطَّم أثناء دخُوله الغلاف الجوِّي قبل 16 دقيقة من هبُوطه على سطح الأرض فوق تكساس ولويزيانا في عام 2003 إلى تأجيل البعثة وتسبَّب بضررٍ بالغ في برنامجِ هابل الفضائي. قرَّر مُديرُ ناسا شون تشارلز أوكيف في ذلك الوقت أنَّ جميع الرَّحلات الفضائية المُستقبليَّة لابُدَّ لها أن تصل إلى الملاذ الآمن في محطة الفضاء الدولية في حال ظهُورِ مشاكل في المركبة الفضائيَّة أثناء الطيران. بعد هذا الحدث أُلغيت بعثات الخدمات لمرصد هابل ومحطَّة الفضاء الدُّوليَّة بسبب عدم وُجُود مركبة فضائيَّة. هُوجِمَ هذا القرار من قبل العديد من عُلماء الفلك الذين شعرُوا أن مقرابُ هابل له من الأهميَّة الكبيرة بحيث أنه يستحقُّ المُخاطرة البشريَّة. كما أعلن أن خليفةُ مقراب هابل المُستقبلي هو مقراب جيمس ويب الفضائي، والذي من المتوقع إطلاقه على أقلِّ تقدير في عام 2018. شكّلت الفجوة في عدم القُدرة على مُراقبة الفضاء والتي ستكُون بين إيقاف تشغيل مقراب هابل وتكليف خليفته مقراب جيمس ويب الفضائي مصدرَ قلق كبير لكثيرٍٍ من عُلماءِ الفلك، نظًرًا لأهميَّة مقراب هابل العلميَّة.
هُناك مخاوف وقلق لدى عُلمَاء الفلك في أنَّ JWST لن يكون في مدار أرضي منخفض ولذلك لن يكُون من السَّهلِ على رُوَّادِ الفضاء إضافة الأجهزة أو القيام بالإصلاحات اللَّازمة في المُستقبل في حال احتاج إلى ذلك، ومن جانبٍ آخر شعر العديد من عُلماء الفلك أنَّه لا يجب تقليل ميزانيَّة الصِّيانة لمقراب هابل على حساب تكلفة بناء مقراب جيمس ويب الفضائي.

بعد وضعِ الكاميرا واسعة المجال 3 WFC3 في المهمَّةِ الرَّابعَة التُقِطت صُورة سدِيم الفَرَاشَة.
في عام 2004 قال شون تشارلز أوكيف أنه سُيفكِّرُ في مراجعة قراره بإلغاء مهمة الصيانة الأخيرة بسبب غضب الشَّعب العارم وكذلك بطََلبٍ من الكونغرس الأمريكي. عقدت الأكاديمية الوطنية للعلوم لجنة رسميَّة في يوليو 2004 وفيها تقرَّر أنَّه يجب الحفاظ على مقراب هابل الفضائي حتَّى مع وُجود المخاطر. ذُكر في التَّقرير "أنه لا يجب على ناسا اتِّخاذ أي عملٍ من شأنه أن يَحُول من إرسال بعثات الخدمات لمقراب هابل عن طريق مكُوك الفضاء". في شهر أُغسطس من نفس السَّنة طلب أُوكيف من مركز غودارد لرحلات الفضاء إعداد اقتراح مُفصَّل لمهام الخدمة الرُوبُوتيَّة ولكن هذا الاقتراح أُلغيَ في وقتٍ لاحق ووُصفت هذه المهمَّة بأنها "غيرِ مُجدية". في نهاية عام 2004 قام العديد من أعضاء الكونغرس الأمريكي برئاسة باربرا مايكولسكي (من ضمنها آلاف الرَّسائل التي كتبها طُلَّأب المدارس من أنحاء البلد) يطلبون من إدارة الرئيس الأمريكي في ذلك الوقت جورج بوش وناسا بإعادة النَّظر في قرارِ إسقاط هابل ووضع خُططٍ لإنقاذه.في أبريل 2005 قال أحدُ المرشَّحين لرئاسة وكالة ناسا للفضاء والذي يحملُ معهُ شهادة في الهندسة الفضائيَّة مايكل دوغلاس غريفين أنه سيُفكَّر في إرسال مهمَّةٍ فضائيَّة مأهُولة للمقراب. وقد تحقَّق ذلك بعد فترةٍ وجيزةٍ من تعيينه مُديرًا للوكالة خوَّل مركز غودارد لرحلات الفضاء البدء بالتَّحضيرات اللَّازمة للقيام بمهمَّةٍ فضائيَّة مأهُولة لصيانة مرصد هابل ومن هذه المهمَّة سيُحدِّد قراره النِّهائي بشأن المرصد. في أكتُوبر 2006 أعطى مايكل الضَّوء الأخضر للانطلاق وتقرَّر موعد الإطلاق في أكتوبر 2008 بواسطة مكُوك الفضاء أتلانتيس وستستمرُّ البعثة لمُدَّة 11 يومًا. في شهر سبتمبر وقبل شهرٍ من الإطلاق تعطَّلت وحدة مُعالجة البيانات الرَّئيسيَّة لهابل وتوقَّفت جميع البيانات والتَّقارير العلميَّة إلى أن أُحضرت النُّسخ الاحتياطيَّة عن طريق الإنترنت في الخامس والعشرين من شهر أكتوبر عام 2008. هذه الوحدة تساعد على قيادة الأجهزة العلميَّة والتَّحكُم بتحرك البيانات داخل المقراب. بسبب العُطل في وحدة مُعالجة البيانات الرَّئيسيَّة والذي جعل من مقراب هابل مقرابًا لا يُمكنُ الاستفادة منه تأجَّلت المهمَّة إلى أن يجد العُلماء بديلًا لوحدة المُعالجات الرَّئيسيَّة.كانت بعثة الخدمة الرَّابعة وهي مهمة الإصلاح الخامسة والتي انطلقت بواسطة مكُوك الفضاء أتلانتيس في عام 2009 هي آخر الرَّحلات الفضائيَّة لمقراب هابل. في هذه المهمَّة استُبدلت وحدة مُعالجة البيانات الرَّئيسيَّة، أُصلحت أنظمة المحلِّل الطَّيفي التصويري للمقراب الفضائي (STIS)، الكاميرا الاستقصائيَّة المُتقدِّمة (ACS) وعدد من الأنظمة الأخرى ووضعُت بطَّاريَّات مُتطوِّرة من النَّيكل والهيدرُوجين. في هذه المهمَّة أيضًا وُضعت أجهزة جديدة، فقد استُبدلت الكامير الكوكبيَّة واسعة المجال 2 بأُخرى مُتطوِّرة وهي الكامير واسعة المجال 3 (WFC3) وجهاز المحلل الطيفي للأصول الكونية (COS) الذي يتميَّز بوجُود قناتين بداخله، الأولى من أجل فحص الضَّوء فوق البنفسجي البعيد بينما القناة الثانية هي من أجل فحص الضَّوء فوق البنفسجي القريب. وكذلك أعادوا تجديد حسَّاسات التَّوجيه الدَّقيق وأضافُوا ألواح عزل جديدة في الأَماكن التي تحطَّمت فيها أغطية هابل. وُضعت أنظمة التحام فضائية، والتي ستُمكِّن المقراب في الُمستقبل بالتَّخلُّص الآمن إمَّا عن طريق طاقم من رُوَّاد الفضاء أو بالطَّريقة الروبوتيَّة. أُنجز العمل في بعثة الخدمة الرَّابعة وبدأ المقراب يعمل بكفاءةٍ وطاقةٍ كاملة. بقي المقراب على ما هُو عليه في عام 2015.

فنِّي وهُو مُمسكٌ بجهاز اقتران الشُّحنة (CCD)

فنَّيُّون وهُم يُعاينُون الكاميرا واسِعَة المجال 3 وهي موضوعة بشكلٍ عمُودي (WFC3)

المحلِّل الطَّيفي للأُصولِ الكَونِيَّة (COS)
المشاريع الكُبرى

إحدى الصُّور المشهُورة التي التقطها مقراب هابل والتي تُدعَى أعمدة النَّشأة تظهرُ فيها نُجُومًا تكوَّنت في العنقُود النَّجمي المفتُوح سديم النَّسر.
مُنذُ أن بدأ برنامجُ هابل نُفِّذت العديد من المشاريع البحثيَّة، البعضُ منها باستخدام مقراب هابل وحده، والأُخرى بالتنسيق بين عدة مرافق مثل مرصد تشاندرا الفضائي للأشعة السينية، المرصد الأوروبي الجنوبي والمقاريب العظيمة. بالرُّغم من قُرب نهاية عمر مقراب هابل إلَّا أنَّه لا تزالُ هناك مشاريع كبيرة مُقرَّرة له ومن الأمثلة على ذلك برنامج الحُقُول المحدُودة Frontier Fields program. وهذا المشرُوع مستوحى من نتائج المُراقبة العميقة التي قام بها هابل للعُنقُود المجرِّي Abell 1689.
المجمع الكوني لدراسة خارج المجرة العميق في مجال تحت الأحمر القريبنُشر خبرٌ صحفي في أغسطُس 2013 أُشير فيه أنَّ المجمع الكوني لدراسة خارج المجرة العميق في مجال تحت الأحمر القريب Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey ـ (CANDELS) هو "أكبر مشرُوع في تاريخ مقراب هابل". تهدُف هذه الدِّراسة إلى استكشاف تطوُّر المجرَّات في بداية الكون ومعرفة الأُصُول الأُولى لبُنية الكون في أقلِّ من مليار سنة بعد الانفجار الكبير. وصف موقع مشرُوع CANDELS أهداف الدِّراسة الاستقصائيَّة ما يلي:
إنَّ المجمع الكوني لدراسة خارج المجرة العميق في مجال تحت الأحمر القريب مُصمَّم لتوثيق الثُّلث الأوَّل لتطوُّر المجرَّة من z = 8 إلى 1.5 عبر التَّصوير العميق لأكثر من 250.000 مجرَّة عن طريق الكاميرا واسعة المجال 3 WFC3/IR والكاميرا الاستقصائيَّة المُتقدِّمة. كذلك فإنَّه سيبحث عن أول نوع Ia SNe ماوراء z> 1.5، ووصف دقَّتها كشُمُوع قياسيَّة لعلم الكون. أُختيرت خمسُ مناطق رئيسيَّة مُتعدِّدة الطُّول الموجي في الفضاء، كُلُّ منطقة لديها بيانات مُتعدَّدة الطُّول الموجي مثل مقراب سبيتزر الفضائي ومُنشآت أُخرى لديها تحليل طيفي للمجرَّات الأكثر إشراقًا. استخدام المناطق الخمسة واسعة الحُقُول تُخفِّف من التَّباين الكوني ولديها عائدات إحصائيَّات قويَّة وعيِّنات كاملة من المجرَّات وصُولًا إلى 109 كُتلة شمسيَّة إلى خارج z ~ 8
برنامج الحقول المحدودة

درس برنامج الحُقُول المحدُودة العنقُود المَجرِّي MACS J0416.1-2403
سمِّي هذا البرنامج رسميًّا بحقل هابل العميق 2012 وكان الهدفُ منه تعزيز المعلُومات المبكِّرة في كيفيَّة تشكُّل وتطوُّر المجرَّات عن طريق دراسة المجرَّات عالية الانزياح الأحمر في حقل هابل العميق بمُساعدة عدسة الجاذبيَّة لرُؤية أخفت المجرَّات الباهتة في الكون البعيد.
وصف موقع حقل هابل العميق الأهداف لهذا البرنامج بما يلي: للكشف عن الأماكن التي لا يُمكن الوُصُول إليها حتى الآن z = 5–10 من المجرَّات التي تكون أكثر خفوتًا بـ 10 إلى 50 ضُعفًا.
لترسيخ فهمنا للكُتلة النَّجميَّة وتاريخ تكوين النجوم.
لتوفير أول إحصائيَّة ووصف مورفولوجي لكيفيَّة تكوين النُّجُوم للمجرَّات عند z> 5.
للبحث عن المجرَّات الممتدَّة عن طريق العنقود المجري والذي يكون عند z> 8 لمعرفة البنية الدَّاخلية لها وتضخيمها بما فيه الكفاية باستخدام العنقود المجري من أجل تتبع المطيافية.
الاستخدام العام

التجمع النجمي المفتوح Pismis 24 مع سديم NGC 6357
يُمكن لأي شخص التَّقَدم بطلبٍ للحصول على وقتٍ لاستخدام مقراب هابل، لأنَّهُ لا تُوجد أيَّةُ قُيود على أيَّةُ جنسية أو انتماء أكاديمي مُعيَّن، ولكن التمويل من أجل التحليل مُحدَّد فقط للمؤسسَّات التابعة للولايات المتَّحدة الأمريكيَّة. إنَّ التَّنافس على استخدام المقراب كبير وإنَّ خُمس الطلبات المُقدَّمة لكل دورة مُرتَّبة ضمن جدول زمني.يكون التقدَّم بشكلٍ سنوي بحيث تُصنَّف الطلبات إلى "مُراقب عام" وهي الطَّلبات الشَّائعة والتي يستطيع فيها المُراقب تغطية الرصد الروتيني التي سيراها باستخدام المقراب. بينما "اللَّقطة الفوتوغرافيَّة" هي من الطَّلبات التي تتطلب 45 دقيقة أو أقل من وقت المقراب لأخذ صُورة فوتوغرافيَّة عن طريقه. يستخدم وقت "اللقطة الفوتوغرافيَّة" لملء الثغرات في جدول المقراب التي لا يُمكنُ شغلها من قبل برامج GO العاديَّة.يستطيعُ عُلماء الفلك استخدام مُقترحات "Target of Opportunity" والتي تكُون فيها المُراقبة الفلكيَّة مُدرجة في الجدول في حال وُجود ظاهرة فلكيَّة عابرة لفترةٍ بسيطة. بالإضافة إلى ذلك فإن 10٪ من وقت المقراب مُحدَّد لكي يُستخدم من قبل "director's discretionary" ـ (DD) وهو وقتٌ مُخصَّصٌ للمُدراء فقط. يستطيع علماء الفلك التَّقدم بطلب (DD) في أي وقتٍ في السَّنة وعادةً ما يتمُّ منحها لدراسة الظَّواهر العابرة غير المُتوقَّعة مثل المُستَعِرُ الأَعظم.
رصد الهواة

صُورة قريبة للأشعَّةِ تحتِ الحمراء التقطتها كاميرا WFC3 في مقراب هابل "للجبل الضبابي" يوضِّحُ فيه ولادة نجم سَدِيم القَاعِدَة. يُمكن مُشاهدة الكثير من النُّجُوم هُنا بسبب شفافيَّتها للحرارة
في عام 1986 أعلن ريكاردو جياكوني وهو أول مدير لمعهد مراصد علوم الفضاء (STScI) أنَّه يعتزم تكريس بعضًا من وقته المُخصَّص للمُراقبة (DD) لعُلماء الفلك الهُواة لكي يستخدمُوا المقراب. كان الوقت المُخصَّص هو بضعة ساعات في كُلِّ دورة ومع ذلك ذلك فإنَّ الهُواة من عُلماء الفلك أبدوا اهتمامًا وحماسًا كبيرين للسَّماح لهم بذلك.تُستعرض طلبات وقت الهُواة بشكلٍ صارم من قبل لجنةٍ من عُلماء الفلك الهواة وتمنح الموافقة للطَّلبات التي لها جدارة علميَّة حقيقيَّة وفائدة وليست مُكرَّرة عن مُقترحات المحترفين، وتتطلب القُدُرات الفريدة من نوعها لمقراب هابل. مُنح ثلاثة عشر من هُواةِ الفلك الوقت المُخصَّص للملاحظة والمراقبة باستخدام مقراب هابل بين الأعوام 1990 و 1997. إحدى الدراسات هي بحث هابل للمذنبات التي تمر بمرحلة انتقالية. أُولى الطلبات هي "A Hubble Space Telescope Study of Posteclipse Brightening and Albedo Changes on Io" نُشرت فيما بعد في مجلَّة إيكاروس وهي مجلَّة مُكرَّسة لدراسات النِّظام الشَّمسي. دراسةٌ أُخرى لمجمُوعةٍ أُخرى من علماء الفلك الهواة نُشرت كذلك في مجلَّة إيكاروس. بسبب انخفاض الميزانيَّة في (STScI) فإنَّ الدَّعم الممنُوح لعلماء الفلك الهواة أصبح غير قابلٍ للاستمرار وبالتالي لم تعُد هناك برامج إضافيَّة خاصَّة لهم.
الاحتفال بذكرى إطلاق المرصد

بُرجٌ من الغَاز والغُبار في سديم القاعدة التقطتها الكاميرا واسعة المجال 3 (WFC3) "للجبل الضبابي" (Mystic Mountain). نُشرت هذه الصورة في عام 2010 بمُناسبة الذِّكرى العشرُون لإطلاقِ المقراب في الفَضَاء.

صُورةٌ للتجمُّع النَّجمي وسترلوند 2 وما حوله، نُشرت هذه الصُّورة في عام 2015 بمُناسبةِ الذِّكرى الخامسة والعشرون لإطلاقِ المقراب في الفَضَاء.
في 24 أبريل 2010 احتفل مقرابٌ هابل الفضائي بمرور عشرُون عامًا على إطلاقه في الفضاء. وللاحتفال بهذه المُناسبة نشرت ناسا ووكالة الفضاء الأُوروبيَّة ومعهد مراصد عُلُوم الفضاء (STScI) صُورة سديم القاعدة التي التقطها مقراب هابل.في 24 أبريل 2015 وبمناسبة الذكرى الخامسة والعشرون نشرت (STScI) في موقع مقراب هابل الرَّسمي في الإنترنت صُورة للتجمُّع النَّجمي وسترلوند 2 وهُو يبعُد 20.000 سنة ضوئيَّة في كوكبة القاعدة. بينما قامت وكالة الفضاء الأُوروبيَّة بإنشاءِ صفحةٍ خاصَّة له في الذِّكرى الخامسة والعشرون في موقعها الرَّسمي. (http://hubble25th.org).في 24 أبريل 2016 نشرت ناسا صورة لسديم الفقاعة للاحتفال بمرور 26 سنة على إطلاقه.
النتائج العلمية
المشاريع الرئيسية
في بداية العقد 1980 عقدت ناسا و(STScI) أربع لجان للنقاش بشأن المشاريع الرئيسيَّة. كانت هذه المشاريع ذات أهميَّة علميَّة كبيرة وتحتاج إلى استخدام المقراب لوقتٍ أطول من أجل الدراسة. وهذه الأوقات الطويلة من الدراسة ستضمن إنهاء الدراسة العلميَّة لهذه المشاريع في وقتٍ أبكر في حال توقف عمل مقراب هابل في وقتٍ أبكر وغير مُتوقَّع. من بين هذه المشاريع هي: دراسة وسط المجرَّات القريبة باستخدام خُطُوط امتصاص الكوازار Quasar Absorption Lines لتحديد خصائص وسط المجرَّات والمحتوى الغازي من المجرَّات ومجموعة أُخرى من المجرَّات.دراسةُ عُمق وسط المجرَّات باستخدام الكاميرا واسعة المجال (WFC) لتأخذ البيانات اللَّازمة للدَّراسة في الوقت الذي يتمُّ فيه استخدام إحدى الأجهزة العلميَّة في المقراب.مشرُوعُ تحديد ثابت هابل بنسبة خطأ 10٪ بالحد من الأخطاء الدَّاخليَّة والخَارجيَّة في مُعايرة قياس المسافة.
الاكتشافات المهمة

صُورة التقطها جهاز المُحلِّل الطَّيفي لصُورِ المقراب الفضائي (STIS) في مقراب هابل عام 2004 يظهر فيها مراحل الشَّفق القُطبي الجنُوبي لكوكب زُحَل لعدَّةِ أيَّام.
ساعد مقرابُ هابل حل بعض المُشكلات الفلكيَّة التي طال أمدها وكذلك تسبَّبت نتائجه في وضع نظريَّات علميَّة لشرح تلك النَّتائج. من بين الأهداف الرَّئيسيَّة المُهمَّة للمقراب هي دراسة المسافة بدَّقة أكبر لنجوم المُتغيِّر القيفاوي، وبالتَّالي الإحاطة بقيمة ثابت هابل، الذي يعبر عن قياس مُعدَّل تمدُّد الكون، والمتعلق بتحديد عمره أيضاً. قبل إطلاق مقراب هابل كانت تَّقديرات مُعدَّل الأخطاء لثابت هابل قد وصلت إلى 50٪، ولكن قياسات هابل لمُتغيِّر قيفاوي لعُنقُود العذراء المجري وعناقيد المجرَّات الأُخرى البعيدة قدَّر قيمة القياس بدقَّة ± 10٪ وهُو ما يتَّفق مع قياسات أُخرى أكثر دقَّة تقدَّم بها المقراب مُنذُ إطلاقه باستخدام التقنيَّات الأُخرى. إنَّ العمر المُقدَّر الآن للكون هو 13.7 مليار سنة؛ والذي كان يقدر ما بين 10 إلى 20 مليار سنة قبل إطلاق هابل للفضاء.ساعد هابل في تقدير عمر الكون كما شكَّك في النَّظريَّات المُستقبليَّة حوله. استخدم عُلماء الفلك من فريق بحث High-Z Supernova ومشروع المُستَعرات العُظمى الفلكي المقاريب الأرضيَّة بالإضافة إلى مقراب هابل لمراقبة المراحل التطوريَّة الأخيرة للمُستَعِر الأعظم بعيدًا عن تأثير الجاذبيَّة ، ووجدوا أن توسُّع الكون يتسارع، ولكن السبب الرَّئيسي لهذا التَّسارع لا يزالُ غير معروف؛ ولكن السبب الأكثر شيُوعًا هي الطَّاقة المُظلِمة التي تملأُ الفضاء.

صورةٌ التقطها مقراب هابل تظهرُ فيها علامات لنُقطٍ بُنيَّة لكُويكب يُدعى Shoemaker–Levy 9 موجُودة في نصفِ الكُرَة الجنُوبي لكوكبِ المُشتري.
الصُّور عالية الدَّقَّة التي أُخذت عن طريق مقراب هابل تحتوي على أماكن مُلائمة لانتشار الثُّقُوب السَّوداء في نوى المجرَّات القريبة، في حين أنه قد كانت هُناك فرضية في بداية العقد 1960 أنَّ الثقوب السَّوداء موجُودة في بعض المجرَّات فقط. في العقد 1980 رشَّح عُلماء الفلك عددد من الثُقُوب السَّوداء وبعد العمل على مقراب هابل توضَّح لعلماء الفلك أنَّ هذه الثُّقُوب السوداء موجودة في مراكز كُلِّ المجرَّات.

صُورةٌ عالية الدَّقَّة التقطها حقل هابل العميق الفائق يظهرُ فيها كوكبة الكُور.
من الاكتشافات الأُخرى التي أظهرها هابل هو قرص Proplyd في سديم الجَبَّار؛ وكذلك أدلَّة على وجود كواكب خارج المجموعة الشَّمسيَّة تدُور حول نُجُوم شبيهةٍ بالشَّمس؛ بينما لا تزالُ النَّظائر البصريَّة لإنفجار أشعَّةِ غَامَا لا تزالُ غامضة. كذلك استُخدم هابل لدراسة الأجسام خارج النِّظام الشَّمسي مثل الكوكبان القزمان بلوتُو وإريس.
نافذة فريدة على الكون أصبحت مُمكنة بواسطة صور حقل هابل العميق وحقل هابل العميق الفائق وحقل هابل العميق الأقصى التي استخدمت حساسية هابل التي لا مثيل لها في الأطوال الموجيَّة المرئيَّة لخلق صور من بقع في السَّماء هي أعمق ما تمَّ الحُصُول عليه في الأطوال الموجيَّة البصريَّة، لقد كشفت الصُّور عن مجرَّاتٍ تبعُد عنّا مليارات السنوات الضَّوئيَّة، وهذه قد أحدثت ثورة في الأوراق العلميَّة وإيجاد نافذة ورُؤية جديدة على بداية الكون. حسَّنت الكاميرا واسعة المجال 3 الرُّؤية لهذه الحُقُول بواسطة الأشعَّة تَّحت الحمراء والأشعَّة فوق البنفسجيَّة، كما دعَّمَت اكتشاف بعض الأجرام الأكثر بُعدًا حتى الآن مثل مجرة MACS0647-JD.
في فبراير 2006 اكتشف هابل الجُرم السَّماوي SCP 06F6. بين شهري يونيو ويوليو من عام 2012 اكتشف علماء فلك من الولايات المتَّحدة عن طريق مقراب هابل قمر خامس ولكنَّة صغير يتحرَّكُ حول الكُويكب الجليدي بلوتو.

فمُ الحُوت ب - Fomalhaut b
في عام 2008 أرسل مقراب هابل صُورًا لكوكب أُطلق عليه فم الحُوت ب - Fomalhaut b، وكانت هذه المرَّة الأُولى التي يتمُّ فيها تصوير كوكب خارجِ المجمُوعةِ الشَّمسيَّة في مارس 2015 أعلن الباحثون أن قياسات شفق قمر غانيميد أظهرت أنه يحتوي على مُحيط تحت سطح الأرض. وجد الباحثون أنَّه باستخدام مقراب هابل لدراسة حركةُ الشَّفق لهذا القمر اتَّضح لهم أنَّ مياه المُحيط الكبير المالحة تُساعدُ في قمع التَّفاعُل بين المجال المغناطيسي لكوكب الُمشتري وغانيميد. قدَّر العُلماء عُمق المُحيط 100 كم (60 ميل) ولكنَّهُ مُحاصر تحت ساق جليدي عُمقُه 150 كم (90 ميل).في 11 ديسمبر 2015 التقط هابل أوَّل صُورة تُنبَّأُ بظُهور المُستعر الأعظم أُطلق عليه "SN Refsdal" والتي تَّم حسابها باستخدام نماذج كُتل مُختلفة للعُنقود المجرِّي الذي شوَّهت الجاذبيَّة ضوء المُستعر الأعظم. في نوفمبر 2014 شُوهد المُستعر الأعظم خلف العُنقُود المجرِّي "MACS J1149.5+2223" وكانت هذه المُشاهدة جُزء من مشرُوع حَقل هَابل العميق. رصد علماء الفلك أربع صور منفصلة للمُستعر الأعظم في ترتيبٍ أُطلق عليه تقاطُع آينشتاين. استغرق الضَّوءُ الآتي من العُنقُود المجرِّي خمس مليارات سنة ليصل كوكب الأرض على الرُّغم من أنَّ المستعر الأعظم قد انفجر قبل 10 مليارات سنة ماضية. الكشفُ عن "SN Refsdal" قد أَسفر كبادرةٍ فريدةٍ للعلماء لاختبار نماذجهم للكتل خاصَّة المادَّة المُظلمة التي تنتشرُ ضمن العُنقُود المجرَّي.في مارس 2016 أعلن العلماء أنَّ هابل قد اكتشف أبعد مجرَّة حتَّى هذا التَّاريخ أُطلق عليها GN-z11. ظهرت نتائج رصد هابل في 11 فبراير 2015 و3 أبريل من نفس العام كجزء من مسح المراصد العُظمى العَمِيق والمجمع الكوني لدراسة خارج المجرة العميق في مجال تحت الأحمر القريب CANDELS/GOODS.
التَّأثير على علم الفلك

مراحلُ تطوُّر اكتشاف الكون.
أثَّرت اكتشافات مقراب هابل على علم الفلك، فقد نُشر أكثر من 9000 بحث استُنِدت الأدَّلة فيه على البيانات العلميَّة التي أعطاها هابل في مجلَّات التَّحكيم، وعدد لا يُحصى من المُناقشات العلميَّة. بعد عدَّة سنوات من نشرِ عُلماء الفلك لأُطروحاتهم العلميَّة المُتعلقة بعلم الفلك فإنَّ ثُلثُهم فقط لم يستطيعُوا الاستشهاد بأدلَّة قطعيَّة لبُحوثهم التي نشرُوها. هُناك فقط 2٪ من الاطرُوحات التي نُشرت بالاعتماد على بيانات مقراب هابل التي لم يستطع عُلماء الفلك الاستشهاد بها. الأُطرُوحات التي استُندت على بيانات هابل لديها استشهادات أكثر من البيانات التي استُندت على مصادرٍ أُخرى غير مقراب هابل. في كلِّ سنةٍ من بين 200 أُطرُوحة علميَّة تُنشر فإن 10٪ فقط منها لديها العديد من الاستشهادات العلميَّة التي اعتمدت على البيانات المُقدَّمة من مقراب هابل.مع أنَّ مقراب هابل قد ساعد في نشر العديد من البُحوث الفلكيَّة إلَّا أنَّ تكاليفه الماليَّة قد زادت. فقد كانت هُناك دراسة حول نسبة الفوائد الفلكيَّة للمراصد الفلكيَّة مُختلفة الأحجام بينما الأُطروحات التي اعتمدت على مقراب هابل قد أنتجت 15 ضعفًا من الاستشهادات التي أعطتها المراصد الأرضيَّة والتي يبلغ قُطرُها 4م (13 قدم) مثل مرصد وليام هرشل وتكلفة هابل هي أكثر بـ 100 مرَّة من بناءٍ وصيانة.الاختيار بين بناء المراصد الأرضيَّة والمراصد الفلكيَّة شيءٌ مُعقَّد، لأنَّه قبل إطلاق هابل للمدار كانت تقنيَّات المراصد الأرضيَّة مثل فتحة إخفاء التداخل قد أعطت صُور ضوئيَّة وصُور أشعَّة تحت حمراء عالية الوُضُوح أكثر من هابل. على الرُّغم من محدوديَّة المراصد الأرضيَّة إلَّا أنَّها قد أعطت صُور أكثر سُطُوعًا بـ 108 مرَّة من الأجسام الباهتة التي لاحظها مقراب هابل.
هندسة الطيران والفضاءلقد قدَّم مقراب هابل مع النتائج العلميَّة مُساهمات كبيرة في تطوّر هندسة الفضاء والطَّيران خاصَّة في أداء أنظمة الأجهزة العلميَّة أثناء وجُودها في المدار الجوِّي المُنخفض للأرض. جاءت هذه الأفكار بسبب المدَّة الطويلة التي عمل فيها مقراب هابل في المدار منذ إطلاقه وأجهزته العلميَّة واسعة النِّطاق وكذلك المعلومات التي جُمعت منه والتي أرسلها للأرض لتحليلها ودراستها من قبل العُلماء. لقد ساهم المقراب بشكلٍ خاص في دراسة سلوك وتركيب البوليمر المُدعَّم بألياف الكربون في الفضاء وكذلك التلوث البصري من الغاز المُتبقِّي وتدخُّل الإنسان في الفضاء بالإضافة إلى التَّغيرات التي قد تحصل بسبب الضَّرر الإشعاعي من الإلكترونيَّات وأجهزة الاستشعار؛ وأخيرًا التأثير طويل المدى من العزل مُتعدِّد الطبقات.
بيانات هابل

قامَ مِقراب هابل بِتَمديدِ مَسَافات قِيَاسَاته لعَشرِ مرَّات ليَصِل إلى حِسَأبِ مَسَافة دَرب التَّبَّانة.
نقل البيانات إلى الأرضفي البداية خُزِّنت بيانات هابل في المكُوك الفضائي. بعد إطلاق المقراب كانت مرافق التَّخزين تُخزِّنُ البيانات في جهاز تسجيلٍ قديم اعتمد على بكراتِ شريطٍ مغناطيسي لتسجيل الصَّوت (كاسيت) ولكنَّها استُبدلت فيما بعد بوسائط تخزينٍ ثابتةٍ خلال بعثتا الإصلاح 2 و3A. يُرسلُ مقرابُ هابل البيانات التي رصدها مرَّتين في اليوم إلى المدار الأرضي الجُغرافي المُتزامن الذي يدورُ فيه القمر الاصطناعي ومن ثمَّ باستخدام القمر الصناعي للتَّتبُّع وترحيل البيانات العلميَّة (TDRS) إلى هوائي موجات عالي الوضُوح وهُو واحد من أصل اثنين يبلغُ قُطر دائرتُه 60 قدم (18 متر) موجُود في مرفق اختبار وايت ساندز في نيومكسيكو بالولايات المُتَّحدة. ومن ذلك المرفق تُرسل البيانات التي استُقبلت إلى مركز غودارد لرحلات الفضاء ومن ثمَّ إلى معهد عُلُوم مراصد الفضاء لأرشفة البيانات. في كلِّ أسبُوعٍ يُرسلُ هابل زهاء 140 جيجابايت من البيانات التي قام برصدها.
الصُّور الملوَّنةجميعُ الصُّور الآتية من هابل هي ذو تدرُّج رمادي أُحاديَّ اللَّون والسبب في ذلك هي احتواء كاميرات هابل على مجمُوعة مُتنوِّعة من المُرشَّحاتٍ الحسَّاسة لموجاتٍ مُحدَّدة للضَّوء. تُنتجُ الصُّور المُلوَّنة عن طريق الجمع بين الصُّور أُحاديَّة اللَّون المُنفصلة في المُرشحات المُختلفة وتكونُ النَّتيجة من هذه العمليَّة هي صُور بألوانٍ كاذبةٍ من ضمنها حزم التَّردُّدات للأشعَّة فوق الحمراء وتحت الحمراء. عادةً تكُونُ صُور الأشعَّة تحت الحمراء بلون أحمرٍٍ غامق بينما صُور الأشعَّة فوق البنفسجيَّة بلون أزرقٍ غامق.
الأرشيفجميع بيانات هابل موجودة في أرشيف ميكُولُسكي في معهد مراصد عُلوم الفضاء (STScI)، معهد هيرتسبيرغ للفيزياء الفلكيَّة ومركز علم الفلك الفضائي الأُوروبي. عادةً تكون البيانات مُمتلكة وتكُونُ مُتاحة فقط للمسؤول الرَّئيسي (Principal Investigator) وعُلماء الفلك المُعيَّنين من قبل (PI) لمُدَّة عامٍ واحد فقط من نقله. يستطيعُ المسؤول الرَّئيسي طلب تمديد مُدَّة المُلكيَّة أو تقصيرها من الشَّخص المعني في معهد مراصد عُلوم الفضاء.جعل المُراقبون من الرصد في وقت (DD) مَعفيًا من فترة المُلكيَّة ونُشرت نتائجه بشكل فوري على الملأ وكذلك بيانات المعايرة مثل الحُقُول المُسطََّحة والأُطُر الدَّاكنة المُقتطعة. جميع البيانات المؤرشفة هي بصيغة نظام النَّقل في صُورةٍ مرنة Flexible Image Transport System ـ (FITS) وهذه الصِّيغة يستطيعُ عُلمَاء الفلك تحليلها ولكنَّها ليست للاستخدام العام. يهدفُ مشرُوع تُراث هابل في نشر بياناتٍ قليلةٍ للاستخدامِ العام مثل أكثر الصُّور لفتًا للانتباه التقطها المقراب وتكون بصيغتي JPEG وTIFF.
التقليل من نقل البيانات

تحليل البيانَات. تعيين أنواع الجُزيئات الموجُودة في الغُبَار الكوني بين وحول المَجَرَّات عن طريقِ قِيَاس طَيف الامتِصَاص بواسطةِ مقراب هَابل الفَضَائي. ينتُجُ عن الامتصَاصِ عُنصرمُعيَّن لخَطٍ أسوَد في الطَّيف.
البيانات الفلكيَّة المأخوذة عن طريق جهاز اقتران الشُّحنة (CCD) يجب أن تخضع لعدَّة خُطُوات مُعايرة قبل أن تكون مُناسبة للتحليل الفلكي. طوَّر (STScI) برامج تقُوم بالمُعايرة التلقائيَّة حينمُا يقومُ أحدٌّ ما بطلبِ بياناتٍ من الأرشيف عن طريق استخدام أفضل الملفَّات المُتاحة المُعايرة. هذه العمليَّة السَّريعة تجعل طلب البيانات الكبيرة يأخذ مدَّة يوم كامل لتتم مُعالجتها ومن ثم استردادُها. تُسمَّى هذه العمليَّة السريعة بالتقليل من نقل البيانات "Pipeline reduction" وهي شائعة كثيرًا في المراصد الكُبرى. يستطيع عُلماء الفلك استرداد الملفَّات المُعايرة بأنفُسهم وتشغيل برامج تقليل نقل البيانات. يكون هذا مرغوب فيه حينما تكون ملفَّات المُعايرة غير تلك الملفَّات التي تمَّ اختيارُها تلقائيًّا عند الحاجة إليها.
تحليل البياناتيُمكن تحليل بيانات هابل باستخدام العديد من العمليَّات. لقد حافظ معهد عُلوم مراصد الفضاء على برنامج نظام تحليل بيانات علوم المراصد الفضائيَّة الذي احتوى على كل ما يحتاجُه البرنامج لتشغيل برنامج تقليل نقل البيانات على ملفَّات البيانات الخام وكذلك على العديد من أدوات مُعالجة الصُّور الفلكيَّة الأُخرى والتي صُمِّمت خصِّيصًا لمُتطلَّبات بيانات هابل. هذا البرنامج يشتغل بوحدة قياس (IRAF) وتعني (Image Reduction and Analysis Facility) وهُو برنامج مشهور لتقليل البيانات الفلكيَّة.
الأنشطة التوعيةكانت هُناك أهميَّة دائمة لمرصد الفضاء بأن يلتقط صُور مُلفتة لخيال الجمهُور بسبب المُساهمة الكبيرة التي يقُومُ بها دافعُو الضَّرائب لبناءه وكذلك تكلُفته الماليَّة. بعد السنوات الأولى الصَّعبة التي أضرَّت بسُمعة مقراب هابل بسبب الخلل الذي أصاب المرآة سمحت بعثة الخدمة الأُولى في إعادة سُمعة هابل بعدما أنتجت البصريَّات التَّصحيحيَّة العديد من الصُّورِ المُذهلة. ساعدت مُبادرات عديدة في جعل الجمهُور على علمٍ بأنشطة مقراب هابل. في عام 2000 قام مكتب معهد مراصد عُلوم الفضاء (STScI) بتنسيق الجهُود من أجل تَّوعية الجمهُور لأهميَّة هذا المقراب وهذه التوعية لكي تضمن الولايات المتَّحدة لدافعي ضرائبها الفائدة المُترتِّبة من استثمارهم في برنامج مقراب الفضاء. لقد قام معهد مراصد علوم الفضاء بإطلقِ موقعٍ خاصٍّ بمقراب هابل وهو HubbleSite.org. برنامج إرث هابل يعمل انطلاقا من (STScI) ليُقدِّم أفضل الصور عالية الوضُوح لأكثر الأجسام المُلفتة التي لاحظها هابل. فريق برنامج إرث هابل يتكون من فلكيِّين مُحترفين وفلكيِّين هُواة بالإضافة إلى أشخاصٍ لديهم خلفية في علم الفلك. لأسبابٍ علميَّة يمنحُ هذا البرنامج وقت قليل لرصد الأجسام في الفضاء عندما لا تكُون الصُّور المُلتقطة تحتوي على موجاتٍ كافيةٍ لإنشاء صُورةٍ بالألوانِ الكاملة.

في عام 2001 أجرَت ناسا استفتاء في الإنترنت عن ما هو أكثر شيء يُريدُون أن يقُوم مقراب هابل برصده، كانت النَّتيجة لهذا الاستفتاء وبأغلبيَّة ساحقة هو اختيارهم لسديم رأس الحصان.
مُنذُ عام 1999 كانت التَّوعية للمقراب في أُورُوبَّا مُتمثلة في مكتب مركز معلومات هابل في وكالة الفضاء الأُوروبيَّة. أُنشئ هذا المكتب في مرفق التَّنسيق الأُوروبي لمقراب الفضاء في مدينة ميونيخ بألمانيا. مهمَّة (HEIC) هي تنفيذ مهام مُتعلِّقة بالتَّوعية والتَّعليمِ في وكالة الفضاء الأوروبيَّة (ESA). يتركز عمل المركز في تسليط الضَّوء على آخر الأخبار والنتائج وكذلك الصُّور المُلفتة للانتباه التي التقطها مقراب هابل. عند زيادة التَّوعية في أوروبا تزدادُ كذلك حصَّة وكالة الفضاء الأوروبيَّة لمقراب هابل (15٪) ويزداد تبرُّع العُلماء الأوروبيون للمقراب الفلكي. تُنتجُ وكالة الفضاء الأوروبيَّة مواد تعليميَّة ونشرة صوتيَّة أُطلق عليها "Hubblecast" لنشر التَّقارير العلميَّة التي نشرها عُلماء الفلك المُحترفين للمُستمعين من العامة.في عام 2001 و2010 فاز مقراب هابل بجائزتين من جوائز إنجاز الفضاء المُقدَّمة من مؤسَّسة الفضاء للأنشطة التَّوعويَّة التي أُنجزت لأجله.
المستقبل

مُلاحظة هابل لنظامِ فمِ الحُوت، التُقطت هذه الصُّورة عن طريقِ الكاميرا الاستقصائِيَّة المُتقدِّمة.
تعطُّل المعداتاستُبدلت في البعثات الماضية العديد من الأجهزة العلميَّة بأُخرى مُتطورَّة لتجنُّب الفشل وكذلك لصُنع فُروعٍ جديدةٍ للعلم، فبدون مهمَّات الإصلاح فإنَّ الأجهزة العلميَّة في المقراب ستفشل في عملها. في أغسطس 2004 تعطَّل نظام الطَّاقة في المُحلِّل الطَّيفي لصُور المقراب الفضائي مما جعله غير صالح للعمل. كانت هناك ثلاث مجموعات من الإلكترونيَّات تعمل قبل أن تتوقف في ذلك العام في حين أنَّ المجمُوعة الأُولى من الإلكترونيَّات قد توقَّفت عن العمل في مايو 2001. أُصلحت أنظمة العُطل في المهمَّة الخامسة والأخيرة في مايو 2009. في يونيو 2006 فشلت إلكترونيَّات الكاميرا الاستقصائيَّة المُتقدِّمة (ACS) وفي 27 يناير 2007 فشل مُزوِّد الطَّاقة في تشغيل الإلكترونيَّات الاحتياطيَّة الموجُودة. كانت أجهزة قناة الحاجب الشَّمسي (Solar Blind Channel) هي الوحيدة التي تعمل بسبب استخدامها للجانب الأول من الإلكترونيَّات. أُضيف مُزوِّد طاقة جديد لقناة الزاوية المُتَّسعة (Wide angle channel) في المهمَّة الأخيرة ولكن باختبارٍ سريعٍ لتجربته وجد العُلماء أنَّه لم يُساعد قناة الوضُوح العالي الموجُودة في هابل.

رسم مُتحرِّك لطريقة عملِ المدوار (gyroscope) وهٌو يُحافظُ على مِحوَرِ دَوَرَانه.
يستخدمُ مقرابُ هابل المدوار (gyroscope) لاستقراره في المدار من أجل التَّوجيه الدَّقيق والمُطرد للأهداف الفلكيَّة المُراد رصدها. في العادة يتمُّ الحاجة إلى ثلاث مداور للقيام بعملية التَّوجيه والاستقرار. من أجل تسجيل الرصد الفلكي فهو يحتاج إلى مُدوارين ولكن منطقة السَّماء التي يُمكن رصدها قد تكون مُقيَّدة إلى حدٍّ ما لذا هُنالك صُعُوبة في إجراء الرصد الدَّقيق. وضع عُلماء الفلك خطَّة طوارئ احتياطيَّة وذلك عن طريق العمل بمدوارٍ واحد فقط؛ ولكن لو فشلت جميع المداور عن العمل فإنَّ الرصد العلمي الذي يقوم به المقراب سوف يتوقف ولن يكُون مُمكنًا القيام بأيّ رصد آخر جديد. في عام 2005 تقرَّر استعمال مدوارين فقط من أجل تمديد عُمر مهمَّة المقراب وبدأوا بذلك في أغسطس 2005 بأن قامُوا بتشغيل مدوارين فقط بينما الإثنين الآخرين سيكونان في وضعية الاحتياط في حال فشل المجموعة الأولى بينما المدوارين الإثنين الأخيرين سيكونان مُتوقِّفين وغير قادرين على إجراء أي عمليَّة. في عام 2007 فشل مدوار آخر في هابل. مع نهاية بعثة الإصلاح الأخيرة تمَّ تغيير ستَّة مداور (وضع زوجين جديدين من المداور وتجديد مدوار سابق موجود مُسبقًا في المقراب) وقبل إرسال بعثة الإصلاح كانت ثلاثة مداور فقط هي التي بقيت تعمل في المرصد. حدَّد المُهندسين أنَّ السبب في فشل المداور عن العمل هو بسبب تآكل الأسلاك الكهربائيَّة التي كانت كانت توصل الطَّاقة للمُحرِّك الذي يضمُّ هواء الأكسجين المضغُوط المستخدم في توصيل السَّائل المُعلَّق السَّميك. اعتمدت المداور الجديدة التي وُضعت في المقراب بعملها عن طريق النَّيتروجين المضغوط. هذا النَّمُوذج الجديد للمدوار هو أكثر فعاليَّة في عمله من النَّمُوذج القديم الذي اعتمد على الأكسجين المضغوط.
تدهور المدار


آلية الإلتقاط الناعمة (Soft Capture Mechanism) وقد ثُبِّتت في أسفل مقراب هابل أثناء المهمة الأخيرة لصيانة المقراب في عام 2009.
يدُور هابل حول الأرض في الطَّبقة العلويَّة للغلاف الجوِّي ومع مرور فترة من الزمن قد يتدهور مدارُه بسبب مُقاومة المائع وفي حال تدهور مداره ولم يتمُّ إعادة رفعه للمدار المُناسب فإنَّه سوف يدخُل غلاف الأرض بالاعتماد على تأثير الشَّمس عليه وكذلك تأثره بالغلاف الجوي العلوي. فلو هبط هابل عن مداره وتسبب في دخُولٍ غير مُنضبط لداخل الأرض فإنَّ أجزاء من المرآةِ الرَّئيسيَّة وهيكلها الدَّاعم قد تنجُو ولكن هُناك احتمالية كبيرة في أنها ستسبَّب في إصابة عددٍ من النَّاس وكذلك حُصُول وفيَّات في المكان الذي ستسقُط عليه. في عام 2013 قال نائبُ مُدير المشروع جيمس جيليتيك أنَّ مقراب هابل من المُمكن أن يصمد في عمله إلى عام 2020. بناءً على النَّشاط الشَّمسي والسُّحُب في الغلاف الجوِّي أو عدمهما فإنَّ دخُول مقراب هابل للغلاف الجوِّي الأرضي سوف يحدُث بين الأعوام 2020 و2040. في يونيو 2016 مدَّدت وكالة الفضاء الأمريكية (ناسا) مدَّة خدمة مرصد هابل إلى يونيو من عام 2021.

نُسخة مُصغَّرة لمرصدِ هابل الفضائي في مرشفيلد ميسوري مسقط رأس العالم الفلكي إدوين هابل.
كانت ناسا قد وضعت خُطَّة لحماية مقراب هابل واسترداده من الفضاء عند انتهاء مدة خدمته وذلك عن طريق إرسال مكُوكٍ فضائي لأخذه من مداره وفي حال حصول ذلك وتمَّ جلبه للأرض فإنّه سوف يُوضع في مؤسسة سميثسونيان ليراهُ النَّاس ولكنَّ هذا القرار لم يعُد ممكنًا بسبب تقاعُد أسطول المركبات الفضائية عن الخدمة في سنة 2011 وهُم بالتَّرتيب Discovery ثمَّ Atlantis وأخيرًا Endeavour ووضعهم تحت قائمة المركبات الفضائيَّة المتقاعدة، والسَّبب الآخر هي التَّكلُفة العالية لجلبه والخطر المُترتِّب الذي قد يُصيب طاقم رُوَّاد الفضاء أثناء جلبه. بدلًا من ذلك فكَّرت ناسا بوضع وحدة دفع خارجية على المقراب للسماح له بالدخُول المُنضبط إلى الأرض. في النِّهاية ثبَّتت ناسا على المقراب آلية الالتقاط الناعمة Soft Capture Mechanism ونظام رينديزوس Rendezvous System لإنزاله من مداره في المُستقبل إمَّا عن طريق الطَّاقم أو عن طريق رُوبوت فضائي.
ما بعد هابل
المقالة الرئيسة: مقراب جيمس ويب الفضائي
المقرابُ الذي سيكُون خليفًا لهابل هو مقرابُ جيمس ويب الفَضَائي (بالإنجليزية: James Webb Space Telescope ويُدعى اختصاراً (JWST))‏. يتميَّز المقراب جيمس بأنَّه سيرصد في نطاقٍ أوسع من الأشعة تحت الحمراء لا يستطيع تلسكوب هابل رصدها. بإمكان تلسكوب جيمس ويب الفضائي الرصد في الأماكن الأكثر برودة وبُعدًا عن كوكب الأرض عند L2 في نُقاط لاغرانج، حيثُ يقُل التَّداخل الحراري والضَّوئي من الأرض والقمر. يتميز مقراب جيمس بأنَّه لم يُصمّم لتكون له القابلية لتغيير أجهزته في المدار مثل مقراب هابل وسوف يحوم في مدار صغير حول نقطة لاغرانج L2 بعيدا عن الأرض. إنَّ الهدف العلمي الرَّئيسي لمقراب جيمس ويب هو مُراقبة الأجسام الأكثر بُعدًا في الكون والتي لا يُمكن للأجهزة رصدُها ويتوقَّعُ العُلماء رصد نُّجُوم الانفجار العظيم والتي قُدِّر عُمرهَا 280 مليون سنة وهي أقدم من النُّجوم التي اكتشفها مقراب هابل. هذا المقراب هو شراكةٌ دُوليَّة بين ناسا، وكالة الفضاء الأُوروبيَّة ووكالة الفضاء الكنديَّة مُنذُ عام 1996، ومن المُقرَّرِ أن يُحمل إلى الفضاء في المُستقبل عن طريق صاروخ Ariane 5.

مقارنة بين مساحة مرآة جيمس ويب الفضائي (25 م²) ومساحة مرآة مقراب هابل (4.5 م²)

صورة توضيحيَّة لمقراب جيمس ويب الفضائي والذي سيكُون خَليفًا لمِقرَابِ هَابل
من المقاريب الأُخرى التي من المُمكن أن تكون خليفةً لهابل في حال إطلاقها هو المرصد الفضائي واسع الفتحة ذو التكنولوجيا المتَّقدمة Advanced Technology Large-Aperture Space Telescope - (ATLAST) الذي اقترحه معهد مراصد علوم الفضاء.
مراصد فضائيَّة مُختارة وعدد من الأجهزة العلميَّة
الاسم السَّنة الطُّول الموجي الفتحَة
العين البشريَّة — 0.39–0.75 ميكرون 0.01 م
مقراب سبيتزر الفضائي 2003 3–180 ميكرون 0.85 م
المحلِّل الطَّيفي التصويري للمقراب الفضائي في هابل 1997 0.115–1.03 ميكرون 2.4 م
الكاميرا واسعة المجال 3 في هابل 2009 0.2–1.7 ميكرون 2.4 م
مقراب هيرشل الفضائي 2009 55–672 ميكرون 3.5 م
مقراب جيمس ويب الفضائي من المقرَّر إطلاقه عام 2020 0.6–28.5 ميكرون 6.5 م
المراصد الأرضيَّة وكذلك المقترحات التي وُضعت للمراصد الكبيرة التي تحتوي على فتحات بُؤر واسعة من المُمكن أن تتجاوز مرصد هابل في قدرتها على تجميع الضَّوء الشَّفَّاف والحيُود بسببِ المرايا الكبيرة التي لديها ومع ذلك فإنَّ هُناك عوامل أُخرى تُؤثر على عملها. فهي يُمكن أن تُضاهي هابل في عملها أو تتجاوزه من ناحية الثَّبات وتحسينها للصُّور المُلتقطة بسبب استخدامها لتقنيَّة البصريَّات المُكيِّفة ومع وجود هذه الميزة للبصريات المكيِّفة في المقاريب الأرضيَّة فإنَّها لم تُقلِّل من أهميَّة وجُود مقراب هابل في الفضاء. مُعظم أنظمة البصريَّات المكيفة تحتوي على كاميرا Lucky imaging وهي نوع من الكاميرات الفلكيَّة التي بإمكانها تقليص حجم الضَّوء المُنتشر حول نجم مُعيَّن ودمجه في صُورةٍ واحدة وكمثالٍ على هذا فإن بإمكانها توضيح صُورة حقل عرضه بين 10" إلى 20" بينما تستطيع الكاميرا الموجودة في هابل أخذ صُور أكثر وضوحًا وحِدَّة في حقل عرضه ½2' (150") وعلاوةً على هذا كله فإنَّ المقاريب الفضائيَّة تستطيع دراسة الكون عبر الطَّيف الكهرُومغناطيسي وهذا ما لا تستطيع المقاريب الأرضيَّة عمله بسبب وجود الغلاف الجوِّي للأرض. بالإضافة إلى ذلك فإنَّ الخلفيَّة في الفضاء تكون أكثر سوادًا على عكس داخل الأرض يعود ذلك بسبب قيام الهواء بامتصاصِ الطَّاقة الشَّمسيَّة في النَّهار ويتخلَّصُ منها في اللَّيل مما ينتُجُ عن ذلك انخفاض ضعيف للتَّوهُج اللَّيلي والذي يُمكن رؤيتُه في الأجرام الفلكيَّة مُنخفضة التَّباين.
قائمة بأجهزة مقراب هابلالكاميرا الاستقصائية المتقدمة (ACS)
المحلل الطيفي للأصول الكونية (COS)
البديل التصحيحي البصري والمحوري (COSTAR)
كاميرا الأجسام الخافتة (FOC)
المحلل الطيفي للأجسام الخافتة (FOS)
حساس التوجيه الدقيق (FGS)
محلل غودارد الطيفي عالي الدقة (GHRS/HRS)
مضواء عالي السرعة (HSP)
الكاميرا القريبة من الأشعة تحت الحمراء والمقياس الطيفي متعدد الأجسام (NICMOS)
المحلل الطيفي التصويري للمقراب الفضائي (STIS)
كاميرا كوكبية واسعة المجال (WFPC)
كاميرا كوكبية واسعة المجال 2 (WFPC2)
كاميرا واسعة المجال 3 (WFC3)
صور من مقراب هابل

مجرَّتَا الهَوائيَّات؛ في جهة اليسَار مجرَّة NGC 4038 وفي اليمين المَجَرَّة NGC 4039

صُورٌ عديدة لاصطدام المجَرَّات ببعضها التقَطَها مقراب هَابل

منطقةٍ صغيرةٍ من سَدِيم الرتيلاء في سحَابَة مَاجلَّان الكُبرَى التقطتها الكَاميرا الكوكبيَّة واسعة المَجَال 2

V838 وحيد القرن

بقَايَا المُستَعر الأعظَم 1006

مجمُوعة من المجرَّات المُتداخلة تُدعى أرب 273

حَلقَات غازيَّة مُتَعَاقبة حول الجُزء الدَّاخلي من سَدِيم عَين القط التُقطت بالكاميرا ACS

هابل وهو مثبت بالمركبة الفضائيَّة وقُبيل الإفراج عنه، مهمَّة الإصلاح SM3B

رُوَّاد فضَاء يعمَلُون على هَابل خلال مهمَّة الإصلاح SM4 والأخيرَة

ألوَاحُ الطاقَة الشَّمسيَّة في مقراب هابل وهي نصف مطويَّة وفي وضعيَّة الانفتاح أثناء نشر المرصَد في الفضَاء لأوَّلِ مرَّة

مقراب هَابل وقد تمَّ تثبيته بالمركبة الفضَائيَّة عن طريقِ ذراعٍ آلية في بعثَةِ الإصلاح الثَّانية

صورة التقَطتهَا الكاميرا واسعة المجال 3 بطريقةِ فيلم بانكرُوماتي لقرصٍ من الغُبار في مجرَّةِ قنطورس أ يكشفُ عن وهجٍ نابضٍ بالحيَاة لعناقيدٍ من النُّجُومِ الزَّرقاء
 ===

ليست هناك تعليقات:

إرسال تعليق